Thermal corrections to the gluon magnetic Debye mass

Authors

  • Alejandro Ayala Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México
  • Jorge David Castaño-Yepes Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México
  • C. A. Dominguez Centre for Theoretical and Mathematical Physics
  • S. Hernández-Ortiz Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México
  • L. A. Hernández Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México
  • M. Loewe Instituto de Física, Pontificia Universidad Católica de Chile
  • D. Manreza-Paret Universidad de La Habana
  • R. Zamora Instituto de Ciencias Basicas, Universidad Diego Portales, Casilla 298-V, Santiago, Chile. Centro de Investigaci´on y Desarrollo en Ciencias Aeroespaciales (CIDCA), Fuerza A´erea de Chile, Santiago, Chile.

DOI:

https://doi.org/10.31349/RevMexFis.66.446

Keywords:

gluon polarization tensor, magnetic fields, finite temperature

Abstract

We compute the gluon polarization tensor in a thermo-magnetic environment in the
strong magnetic field limit at zero and high temperature. The magnetic field effects are introduced using Schwinger's proper time method. Thermal effects are computed in the HTL approximation. At zero temperature, we reproduce the well-known result whereby for a non-vanishing quark mass, the polarization tensor reduces to the parallel structure and its coefficient develops an imaginary part corresponding to the threshold for quark-antiquark pair production. This coefficient is infrared finite and simplifies considerably when the quark mass vanishes. Keeping always the field strength as the largest energy scale, in the high temperature regime we analyze two complementary hierarchies of scales: $q^2<< m_f^2<< T^2$ and $m_f^2<< q^2<< T^2$. In the latter, we show that the polarization tensor is infrared finite as $m_f$ goes to zero. In the former, we discuss the thermal corrections to the magnetic Debye mass.

References

G. S. Bali, F. Bruckmann, G. Endr¨odi, Z. Fodor, S. D. Katz, S. Krieg, A. Sch¨afer, and K. K. Szab´o, J. High Energy Phys. 02 (2012) 044; G. S. Bali, F. Bruckmann,

G. Endr¨odi, Z. Fodor, S. D. Katz, and A. Sch¨afer, Phys. Rev. D 86, 071502 (2012); G. Bali, F. Bruckmann, G. Endr¨odi, S. Katz, and A. Sch¨afer, J. High Energy Phys. 08 (2014) 177.

F. Bruckmann, G. Endr¨odi, and T. G. Kovacs, J. High Energy Phys. 04 (2013) 112.

R. L. S. Farias, K. P. Gomes, G. Krein and M. B. Pinto, Phys. Rev. C 90, 025203 (2014).

M. Ferreira, P. Costa, O. Louren¸co, T. Frederico, C. Providˆencia, Phys. Rev. D 89, 116011 (2014).

A. Ayala, L. A. Hernandez, A. J. Mizher, J. C. Rojas, C. Villavicencio, Phys. Rev. D 89, 116017 (2014).

A. Ayala, M. Loewe and R. Zamora, Phys. Rev. D 91, 016002 (2015).

A. Ayala. C. A. Dominguez, L. A. Hernandez, M. Loewe, R. Zamora, Phys. Rev. D 92, 096011 (2015).

A. Ayala, M. Loewe, A. J. Mizher, R. Zamora, Phys. Rev. D 90, 036001 (2014).

R. L. S. Farias, V. S. Timoteo, S. S. Avancini, M. B. Pinto, G. Krein, Eur. Phys. J. A 53, 101 (2017).

A. Ayala, C. A. Dominguez, L. A. Hernandez, M. Loewe,

A. Raya, J. C. Rojas, C. Villavicencio, Phys. Rev. D 94, 054019 (2016).

A. Ayala, C. A. Dominguez, L. A. Hernandez. M. Loewe, R. Zamora, Phys. Lett. B 759, 99-103 (2016).

Ayala, J. J. Cobos-Mart´ınez, M. Loewe, M. E. Tejeda- Yeomans, R. Zamora, Phys. Rev. D 91, 016007 (2015).

N. Mueller, J. A. Bonnet, C. S. Fischer, Phys. Rev. D 89, 094023 (2014); N. Mueller, J. M. Pawlowski, Phys. Rev. D 91, 116010 (2015).

D. E. Kharzeev, L. D. McLerran, H. J. Warringa, Nucl. Phys. A 803, 227-253 (2008).

A. Ayala, J. D. Castan˜o-Yepes, C. A. Dominguez, L. A. Hernandez, S. Hernandez-Ortiz, M. E. Tejeda-Yeomans, Phys. Rev. D 96, 014023 (2017); Erratum: Phys. Rev. D 96, 119901 (2017); A. Ayala, J. D. Castan˜o-Yepes,

I. Dominguez Jimenez, J. Salinas San Mart´ın, M. E. Tejeda-Yeomans, e-Print: arXiv:1904.02938.

G. Basar, D. E. Kharzeev, V. Skokov, Phys. Rev. Lett. 109, 202303 (2012); G. Basar, D. E. Kharzeev, E. V. Shuryak, Phys. Rev. C 90, 014905 (2014).

B. G. Zakharov, Eur. Phys. J. C 76, 609 (2016). [18] K. Tuchin, Phys. Rev. C 91, 014902 (2015).

A. Ayala, D. Manreza Paret, A. P´erez Mart´ınez, G. Pic- cinelli, A. S´anchez, J. S. Ru´ız Montan˜o, Phys. Rev. D 97, 103008 (2018).

W. Dittich and M. Reuter, Effective Lagrangians in Quantum Electrodynamics, Springer-Verlag, Berlin Hei- delberg New York Tokyo (1985).

K. Hattori, K. Itakura, Annals Phys. 330, 23-54 (2013).

K. Hattori, D. Satow, Phys. Rev. D 97, 014023 (2018).

K. Fukushima, Phys. Rev. D 83, 111501 (2011).

E. J. Ferrer, A. Sanchez, Phys. Rev. D 100, 096006 (2019).

A. Bandyopadhyay, C. A. Islam and M. G. Mustafa, Phys. Rev. D 94, 114034 (2016).

W.-y. Tsai, Phys. Rev. D 10, 2699 (1974).

J. Alexandre, Phys. Rev. D 63, 073010 (2001).

V. A. Miransky and I. A. Shovkovy, Phys. Rep. 576, 1- 209 (2015).

K. I. Ishikawa, D. Kimura, K. Shigaki and A. Tsuji, Int. J. Mod. Phys. A 28, 1350100 (2013).

A. Ayala, J. D. Castan˜o-Yepes, M. Loewe, E. Mun˜oz, e-Print: arXiv:1912.07136 [hep-th].

S. Rath and B. K. Patra, JHEP 1712, 098 (2017).

S. Rath and B. K. Patra, Eur. Phys. J. A55, 220 (2019).

F. Karbstein, Phys. Rev. D 88, 085033 (2013).

T. K. Chyi, C. W. Hwang, W. F. Kao, G. L. Lin,

K. W. Ng and J. J. Tseng, Phys. Rev. D 62, 105014

(2000).

B. Karmakar, A. Bandyopadhyay, N. Haque, M. G. Mustafa, Eur. Phys. J. C 79, 658 (2019).

A. Ayala, C. A. Dominguez, S. Hernandez-Ortiz,

L. A. Hernandez, M. Loewe, D. Manreza Paret and R. Zamora, Phys. Rev. D 98, 031501 (2018).

M. Le Bellac, Thermal Field Theory, Cambridge Univer- sity Press, 1996.

J. I. Kapusta and C. Gale, Finite-Temperature Field The- ory Principles and Applications, Cambridge University Press, 2006.

Downloads

Published

2020-07-01

How to Cite

[1]
A. Ayala, “Thermal corrections to the gluon magnetic Debye mass”, Rev. Mex. Fís., vol. 66, no. 4 Jul-Aug, pp. 446–461, Jul. 2020.