Thermal properties and degradation kinetics of epoxy-γ-alumina and epoxy-zinc oxide light weight composites

Authors

  • N. Camacho CONACYT-CIDESI-CENTA
  • J.F. May-Crespo CONACYT -El Colegio de Michoacan, Cerro de Nahuatzen 85, Fracc. Jardines del Cerro Grande, La Piedad, Michoacan, 59370, Mexico.
  • J.B. Rojas-Trigos Instituto Politecnico Nacional, CICATA-Legaria, Calzada Legaria No. 694 Col. Irrigacion, Miguel Hidalgo, 11500, Ciudad de Mexico, Mexico.
  • K. Martinez Instituto Politecnico Nacional, CICATA-Legaria, Calzada Legaria No. 694 Col. Irrigacion, Miguel Hidalgo, 11500, Ciudad de Mexico, Mexico.
  • E. Marin Instituto Politecnico Nacional, CICATA-Legaria, Calzada Legaria No. 694 Col. Irrigacion, Miguel Hidalgo, 11500, Ciudad de Mexico, Mexico.
  • G.C. Mondragon-Rodriguez CONACyT, Center of Engineering and Industrial Development, CIDESI, Surface Engineering Department, Queretaro, Av. Pie de la Cuesta 702, 76125 Santiago de Queretaro, Mexico.

DOI:

https://doi.org/10.31349/RevMexFis.66.479

Keywords:

Epoxy-based composites, Oxide ceramic fillers, Thermal stability, Thermal conductivity.

Abstract

Lightweight composite materials are the gold standard in aeronautical and aerospace applications due to their strength and low mass. To carry higher payloads and decrease launching costs, nanosatellites lightweight. Additionally, nanosatellites must also resist high thermal radiation loads while working in orbit. Polymer-based composite materials maintain low mass and added reinforcing ceramic fillers contributes to increasing radiation resistance, thus producing composites that meet both requirements. In this work, the effects of γ-alumina (Al2O3) and zinc oxide (ZnO) micro- and nanoparticles on the thermal properties and degradation kinetics of epoxy-based composites were investigated. The effective thermal conductivity improved up to 17.8 % for epoxy/γ-Al2O3 and 27.4 % for epoxy/ZnO. The effective thermal diffusivity values show a monotonic decreasing behavior as a function of the particle concentration for the epoxy/γ-Al2O3 composites; for the epoxy/ZnO composites, no correlation on the effective thermal diffusivity values with the ZnO-content was observed. Both oxide-based ceramic fillers increase the thermal stability of epoxy up to 250 °C; however, γ-Al2O3 decreased the maxima decomposition temperature of the epoxy matrix by 6°C. Zinc oxide did not affect the maxima decomposition temperature but decreased the activation energy of epoxy by ~ 45 %. These results provide a feasible manufacturing method for epoxy-based composite materials (i.e. nanosatellites) where efficient heat transfer, heat resistance, and low mass are required.

Author Biography

N. Camacho, CONACYT-CIDESI-CENTA

CONACYT Research Fellow commissioned at Centro de Ingeniería y Desarrollo Industrial. I am currently collaborating with the Centro Nacional de Tecnologias Aeronáuticas.

References

E. Escobar, M. Diaz and J. C. Zagal, Appl. Therm. Eng., 105 (2016), 490.

C. E. Nomme, Mechanical Design of CubeSat Structures Using Composites and Polymers. Master Thesis, Institutt for produktutvikling og materialer. NTNU,(2013).

M. A. Silva, D. C. Guerreri, A. Cervone and E. Gill, Acta Astronaut., 143 (2018), 234.

S. Corpino, M. Caldera, F. Nichele, N. Masoero and N. Viola, Acta Astronaut., 115 (2015), 247.

D. Arce, B. Jutzeler and G. Röthlisberger, SwissCube: Phase A Structure and Configuration (S3-A-STRU-1-4-Structure and Configuration), Haute École Specialisée de Suisse Occidental, LMAF (Lausanne, Switzerland, 2006).

A. Ampatzoglou, A. Baltopoulos, A. Kotzakolios and V. Kostopoulos, IJASAR, 1 (1) (2014), 1.

École Polytechnique de Laussane, EPLF Space Center: SwissCube, (2011). [Online]. Available: http://swisscube.epfl.ch/.

M. A. Viscio, N. Viola, S. Corpino, F. Stesina, S. Fineschi, F. Fumenti and C. Circi, Acta Astronaut., 104 (2014), 516.

A. Poghosyan and A. Golkar, Prog. Aerosp.Sci., 88 (2017), 59.

N. Saba, P. Tahir and M. Jawaid, Polymers (Basel), 6 (2014), 2247.

S. Fakirov, Compos. Sci. Technol.,89 (2013), 211.

M. Baibarac and P. Gómez-Romero, J. Nanosci.Nano.

Technol., 6 (2) (2006), 289.

X. Zhang, H. Hao, Y. Shi, J. Cui and X. Zhang, Constr. Build. Mater., 114 (2016), 638.

Y. Li, H. Zhang, H. Porwal, Z. Huang, E. Bilotti and T. Peijs, Compos. Part-A-Appl. S., 95 (2017), 229.

P. Katti, K. Kundan, S. Kumar and S. Bose, Polymer, 122 (2017),184.

J. Kim, D. Seong, T. Kang and J. Youn, Carbon, 44 (2006), 1898.

Chang, H.P., H. Liu and C. Tan, Polymer, 75 (2015), 125.

Wu, M., X. Yuan, H. Luo, C. Chen, K. Zhou and D. Zhang, Phys. Lett. A, 381 (19) (2017), 1641.

Y. Hu, G. Du and N. Chen, Compos. Sci. Technol., 124 (2016), 36.

L. McGrath, R. Parnas, S. King, J. Schroeder, D. Fischer and J. Lehart, Polymer, 49 (2008), 999.

W. Jiang, F.-L. Jin and S.-J. Park, J. Ind. Eng.Chem., 18 (2012), 594.

A. Omrani, L. Simon and A. Rostami, Mater. Chem. Phys., 114 (2009), 145.

M. Zakaria, H. Akil, M. Kudus and M. Othman, Compos. Part B-Eng., 91 (2016), 235.

S. Mallakpour and V. Behranvand, Eur. Polym. J., 84 (2016), 377.

Y. Feng, C. He, Y. Wen, X. Zhou, X. Xie, Y. Ye and W.-W. Mai, Compos. Sci. Technol, 160 (2018), 42.

M. W. Akhtar, Y. S. Lee, D. J. Yoo and J. S. Kim, Compos. Part-B Eng., 131 (2017), 184.

S. Gustafsson, M. Chohan and A. Magsood, J. Appl. Phys., 55 (1984), 3348.

A. Magsood and M. Anis-ur-Rehman, 2013IOP Conference Series: Materials Science and Engineering, Indus University, Pakistan, 2013.

S. E. Gustafsson, Rev. Sci. Instrum., 62 (1991), 797.

G. Paglia, Faculty of Science, Department of Applied Physics and Department of Applied Chemistry, Curtin University, Perth, Australia, 2004.

J. Chiguma, E. Johnson, P. Shah, N. Gornopolskaya and W. Jones Jr., Open J. Compos. Mater., 3 (2013), 51.

Y.-X. Fu, Z.-X. He, D.-C. Mo and S.-S. Lu, "Appl. Therm. Eng., 66 (2014), 493.

W. Yuan, Q. Xiao, L. Li and T. Xu, " Appl. Therm. Eng., 106 (2016), 1067.

A. Mendioroz, R. Fuente-Dacal, E. Apiñaniz and A. Salazar, Rev. Sci. Instrum., 80 (2009), 074904.

A. Salazar, A. Mendioroz and R. Fuente, Appl. Phys. Lett., 95 (2009), 121905.

K. Martínez, E. Marín, C. Glorieux, A. Lara-Bernal, A. Calderón, G. Peña Rodríguez and R. Ivanov, Int. J. Therm. Sci., 98 (2015), 202.

J. Gu, X. Yang, Z. Lv, N. Li, C. Liang and Q. Zhang, Int. J. Heat Mass Tran., 92 (2016), 15.

A. A. Moosa, F. Kubba, M. Raad and A. Ramazani, Am. J. Mater. Sci., 6 (5) (2016), 125.

D. Gúzman, X. Ramis, X. Fernández-Franco and A. Serra, Polymers, 7 (2015), 680.

K. Curran and M. Strlič, Stud. Conserv., 60 (1) (2015), 1.

F.-L. Jin and S.-J. Park, Polym. Degrad. Stabil., 97 (2012), 2148.

M. Kumar, S. Sabbarwal, P. Mishra and S. Upadhyay, Bioresource Technol., 279 (2019), 262.

A. Omrani and A. A. Rostami,Mat. Sci.Eng. A-Struct., 517 (2009), 185.

T.-K. Yang, S. S.-Y. Lin and T.-H. Chuang, Polym. Degrad. Stabil., 78 (2002), 525.

S.-C. Liufu, H.-N. Xiao and Y.-P. Li, Polym. Degrad. Stabil., 87 (2005), 103.

M. Ghaffari, M. Ehsani, M. Vandalvand, E. Avazverdi, A. Askari and A. Goudarzi, Prog. Org. Coat., 89 (2015), 277.

Downloads

Published

2020-07-01

How to Cite

[1]
N. Camacho, J. May-Crespo, J. Rojas-Trigos, K. Martinez, E. Marin, and G. Mondragon-Rodriguez, “Thermal properties and degradation kinetics of epoxy-γ-alumina and epoxy-zinc oxide light weight composites”, Rev. Mex. Fís., vol. 66, no. 4 Jul-Aug, pp. 479–489, Jul. 2020.