A Study on the density and excess molar volume of the mixture formed by 2-amino-2-methyl-1-propanol, diethanolamine, and water
DOI:
https://doi.org/10.31349/RevMexFis.66.504Keywords:
ternary system, aqueous alkanolamine solutions, density, excess molar volumeAbstract
Aqueous alkanolamines solutions are widely used in petroleum refineries to remove acid gases from hydrotreated streams. The knowledge of physical properties in this kind of solutions is useful for the correct design, operation, and control of sweetening processes. Due to the above, we carried out a study on the density of the ternary mixture: 2-Amino-2-Methyl-1-Propanol (AMP) + Diethanolamine (DEA) + Water (H2O). Density was measured by means of the vibrating tube method with an uncertainty of 2×10-4 g·cm-3. The experimental data was obtained in the entire concentration range, temperatures from 303.15 to 333.15 K, and pressure of 101.3 kPa. In addition, the following three prediction methods were tested to estimate the density of the blend: mixing rule, polynomial correlation, and excess molar volume. The best prediction was obtained by means of the excess molar volume through the Redlich-Kister and Cibulka equations, where an average absolute deviation (AAD) of 0.02%, correlation coefficient (R) of 0.9999, and standard deviation (<s>) of 3×10-4 g·cm-3 were obtained.
References
F. Murrieta-Guevara, M.E. Rebolledo-Libreros, A. Romero-Martínez, A. Trejo, Fluid Phase Equilibr. 150 (1998) 721.
G.T. Rochelle, Science. 325 (2009) 1652.
J. Águila-Hernández, R. Gómez-Quintana, F. Murrieta-Guevara, A. Romero-Martínez, A. Trejo, J. Chem. Eng. Data. 46 (2001) 861.
Z. Idrisa, J. Hana, S. Jayarathnaa, D.A. Eimera, Energy Procedia. 114 (2017) 1828.
U.S.P.R. Arachchige, N. Aryal, D.A. Eimer, M.C. Melaaen, Ann. T. Nord. Rheol. Soc. 21 (2013) 299.
C. Chan, Y. Maham, A.E. Mather, C. Mathonat, Fluid Phase Equilibr. 198 (2002) 239.
S.J. Yoon, H-S. Lee, H. Lee, J-I. Baek, J-H. Yoon, H-M. Eum, J. Chem. Eng. Data. 47 (2002) 30.
B.P. Mandal, M. Kundu, S.S. Bandyophahyay, J. Chem. Eng. Data. 48 (2003) 703.
M.E. Rebolledo-Libreros, A. Trejo, J. Chem. Eng. Data. 51 (2006) 702.
E. Álvarez, F. Cerdeira, D. Gómez-Díaz, J.M. Navaza, J. Chem. Eng. Data. 55 (2010) 994.
D. Ma, Q. Liu, C. Zhu, H. Feng, Y. Ma, J. Chem. Thermodynamics. 134 (2019) 5.
F. Murrieta-Guevara, A. Trejo, J. Chem. Eng. Data. 29 (1984) 204.
I. Cibulka, Collect. Czech. Commun. 47 (1982) 1414.
P.P. Singh, R.K. Nigam, S.P. Sharma, S. Aggarwal, Fluid Phase Equilibr. 18 (1984) 333.
S. Xu, F.D. Otto, A.E. Mather, J. Chem. Eng. Data. 36 (1991) 71.
M.H. Li, Y.C. Lie, J. Chem. Eng. Data. 39 (1994) 444.
Y. Maham, T.T. Teng, L.G. Hepler, A.E. Mather, J. Solution Chem. 23 (1994) 195.
R.M. DiGuillo, R.J. Lee, S.T. Schaeffer, L.L. Brasher, A.S. Teja, J. Chem. Eng. Data. 37 (1992) 239.
Y.W. Wang, S. Xu, F.D. Otto, A.E. Mather, Chem. Eng. J. 48 (1992) 31.
J.A. Riddick, W.B. Bunger, Organic Solvents: Physical Properties and Methods of Purification, 3th ed. (Wiley-Interscience, New York, 1970), pp. 66-69
C.H. Hsu, M.H.J. Li, J. Chem. Eng. Data. 42 (1997) 502.
Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.