Superstatistics of the one-dimensional Klein-Gordon oscillator with energy-dependent potentials

Authors

  • M. Labidi Laboratoire de Physique Appliquee et Theorique, LPAT, Universite Larbi-Tebessi, Tebessa, Algeria.
  • A. Boumali Laboratoire de Physique Appliquee et Theorique, LPAT, Universite Larbi-Tebessi, Tebessa, Algeria.
  • A. Ndem Ikot Laboratoire de Physique Appliquee et Theorique, LPAT, Universit´e Larbi-Tebessi, Tebessa, Algeria.

DOI:

https://doi.org/10.31349/RevMexFis.66.671

Abstract

AbstractIn this paper, we investigated the influence of energy-dependent potentials on the thermodynamic properties of the Klein-Gordon oscillator(KGO): in this way all thermal properties have been determinate via the well-know Euler-Maclaurin method. After this, we extend our study to the case of superstatistical properties of our problem in question. The probability densityf(β)followsχ2− superstatistics (=Tsallis statistics or Gamma distribution). Under the approximation of the low-energy asymptotics of superstatistics, the partition function, at first, has been calculated. This approximation leads to a universal parameterqfor any superstatistics, not only for Tsallis statistics. By using the desired partition function, all thermal properties have been obtained in terms of the parameterq. Also, the influence of the this type of potentials on these properties, via the parameterγ, are well discussed.

Downloads

Published

2020-09-01

How to Cite

[1]
M. Labidi, A. Boumali, and A. Ndem Ikot, “Superstatistics of the one-dimensional Klein-Gordon oscillator with energy-dependent potentials”, Rev. Mex. Fís., vol. 66, no. 5 Sept-Oct, pp. 671–682, Sep. 2020.

Issue

Section

17 Thermodynamics and Statistical Physics