Superstatistics of the one-dimensional Klein-Gordon oscillator with energy-dependent potentials
DOI:
https://doi.org/10.31349/RevMexFis.66.671Abstract
AbstractIn this paper, we investigated the influence of energy-dependent potentials on the thermodynamic properties of the Klein-Gordon oscillator(KGO): in this way all thermal properties have been determinate via the well-know Euler-Maclaurin method. After this, we extend our study to the case of superstatistical properties of our problem in question. The probability densityf(β)followsχ2− superstatistics (=Tsallis statistics or Gamma distribution). Under the approximation of the low-energy asymptotics of superstatistics, the partition function, at first, has been calculated. This approximation leads to a universal parameterqfor any superstatistics, not only for Tsallis statistics. By using the desired partition function, all thermal properties have been obtained in terms of the parameterq. Also, the influence of the this type of potentials on these properties, via the parameterγ, are well discussed.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.