Thermal quantum correlations of spin chain with multiple interactions

Authors

  • S. Ahadpour Physics Department, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
  • F. Mirmasoudi Physics Department, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.

DOI:

https://doi.org/10.31349/RevMexFis.66.692

Keywords:

Thermal quantum correlations, spin squeezing, trace ditance discord, anisotropic Heisenberg XYZ model

Abstract

In order to explore the impact of distance between spins on quantum correlation, we compute trace ditance discord (TDD) and spin squeezing in an anisotropic Heisenberg XYZ model with Dzyaloshinskii-Moriya interaction in the presence of the external magnetic field. It is valuable to investigate that how we can protect quantum correlations in system when the distance between the spins is promoted. We find that rich Dzyaloshinskii-Moriya interaction and low temperature can be effective for quantum correlations with increasing distance between spins. As, at sufficeintly low temperature In addition, the generated correlated channels are inspected to interchange the information between the system qubits applying the standard dense coding protocol; then, the dense coding capacity of the transmitted information is quantified. It is found that the strength Dzyaloshinskii-Moriya interaction and magnetic field have a great impact on the dynamics of the quantum correlations and, consequently, the quality of the generated channels to exchange the information.  Therefore, the effect of Dzyaloshinskii-Moriya interaction for various strengths of temperature needs to be considered to have valid dense coding when distance of spin increases.

References

M. A. Nielsen and I. L. Chuang, Cambridge University

Press New York, NY, USA , 708 (2011).

R. Horodecki,

P. Horodecki,

M. Horodecki,

and

K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).

J. S. Bell, Physics Physique Fizika 1, 195 (1964).

W. Y. Sun, D. Wang, and L. Ye, Physica. B, Condensed

Matter 524, 27 (2017).

L. Shuguo and T. Peiqing, Physica. B, Condensed Matter

, 1 (2015).

D. Bouwmeester, A. K. Ekert,

and A. Zeilinger, The

Physics of Quantum Information: Quantum Cryptogra-

phy, Quantum Teleportation, Quantum Computation, 1st

ed. (Springer Publishing Company, Incorporated, 2010).

Z. S. Wang, Phys. Rev. A 79, 024304 (2009).

Z. Wu, Chunfeng and, X.-L. Feng, H.-S. Goan, L. C.

Kwek, C. H. Lai, and C. H. Oh, Phys. Rev. A 76, 024302

(2007).

Y.-N. Guo, K. Zeng, and P.-X. Chen, Laser Physics Let-

ters 16, 095203 (2019).

T. Hiroshima, Journal of Physics A: Mathematical and

General 34, 6907 (2001).

Z. Shadman, H. Kampermann, C. Macchiavello,

and

D. Bruß, New Journal of Physics 12, 073042 (2010).

F. Mirmasoudi and S. Ahadpour, Journal of Physics A:

Mathematical and Theoretical 51, 345302 (2018).

A. Redwan, A.-H. Abdel-Aty, N. Zidan,

and T. El-

Shahat, Chaos. 29, 2881 (2019).

H. Takesue, S. D. Dyer, M. J. Stevens, V. Verma, R. P.

Mirin, and S. W. Nam, (2015).

K. Shimizu, N. Imoto, and T. Mukai, Phys. Rev. A 59,

(1999).

S. A. Podoshvedov and J. Kim, Phys. Rev. A 77, 032319

(2008).

Mattle, Weinfurter, Kwiat, and Zeilinger, Physical re-

view letters 76 25, 4656 (1996).

A. S. Sørensen and K. Mølmer, Phys. Rev. Lett. 86, 4431

(2001).

M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).

D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J.

Heinzen, Phys. Rev. A 50, 67 (1994).

X. Wang and B. C. Sanders, Phys. Rev. A 68, 012101

(2003).

X. Wang, Journal of Optics B: Quantum and Semiclassi-

cal Optics 3, 93 (2001).

U. V. Poulsen and K. Mølmer, Phys. Rev. A 64, 013616

(2001).

X.-J. Yi and J.-M. Wang, Int J Theor Phys 52, 16031607

(2013).

J. I. C. P. Z. A Srensen, LM Duan, Nature 409, 6366

(2001).

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti,

and A. Ac´ ın, Phys. Rev. A 81, 052318 (2010).

H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901

(2001).

L. Henderson and V. Vedral, Journal of Physics A: Math-

ematical and General 34, 6899 (2001).

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Ve-

dral, Rev. Mod. Phys. 84, 1655 (2012).

E. B. Feldman and A. I. Zenchuk, JETP Letters 93,

(2011).

B. Daki´ c, V. Vedral,

and i. c. v. Brukner, Phys. Rev.

Lett. 105, 190502 (2010).

S. Rana and P. Parashar, Phys. Rev. A 87, 016301

(2013).

T. Debarba, T. O. Maciel, and R. O. Vianna, Phys. Rev.

A 86, 024302 (2012).

F. Ciccarello, T. Tufarelli,

and V. Giovannetti, New

Journal of Physics 16, 013038 (2014).

R. jie Zhang, S. Xu, J.-D. Shi, W. Ma, and L. Ye, Quan-

tum Information Processing 14, 4077 (2015).

W. W. Cheng, X. Y. Wang, Y. B. Sheng, L. Y. Gong,

S. M. Zhao, and J. M. Liu, Scientific Reports 7, 345302

(2017).

N. Z. Ahmad Redwan, Abdel Haleem Abdel-Aty and

T. E. Shahat, Chaos 29, 345302 (2018).

S. Ahadpour and F. Mirmasoudi, Theor Math Phys 195,

(2018).

A. A. Saeed Haddadi, Mohammad Reza Pourkarimi,

Modern Physics Letters A , 1950175 (2019).

X. Wang and B. C. Sanders, Phys. Rev. A 68, 012101

(2003).

F. M. Paula, R. T. de Oliveira, and M. S. Sarandy, Phys.

Rev. A 87, 064101 (2013).

S. Luo, Phys. Rev. A 77, 022301 (2008).

S. L Braunstein and H. J. Kimble, Phys. Rev. A 61,

(2000).

Downloads

Published

2020-09-01

How to Cite

[1]
S. Ahadpour and F. Mirmasoudi, “Thermal quantum correlations of spin chain with multiple interactions”, Rev. Mex. Fís., vol. 66, no. 5 Sept-Oct, pp. 692–699, Sep. 2020.

Issue

Section

14 Other areas in Physics