Molecular modelling, spectroscopic characterization and nonlinear optical analysis on N-Acetyl-DL-methionine

Authors

  • N. Günay Beykent University
  • Ö. Tamer Sakarya University
  • D. Avcı Sakarya University
  • E. Tarcan Kocaeli University
  • Y. Atalay Sakarya University

DOI:

https://doi.org/10.31349/RevMexFis.66.749

Keywords:

N-Acetyl-DL-Methionine, IR, NMR, DFT, Nonlinear Optic

Abstract

In this present methodical study, on the basis of the density functional theory (DFT), the first-principles calculations have been employed successfully to study the structural and electronic properties of N-acetyl-DL-methionine (C7H13NO3S) which is a derivative of DL-methionine which is also known DL-2-amino-4-methyl-thiobutanoic acid. Optimized molecular structure, vibrational frequencies and also 13C and 1H NMR chemical shift values of the title compound are provided in a detailed manner by using B3LYP and HSEH1PBE functionals by applying 6-311++G(d,p) basis set for calculations using Gaussian 09W program. The comparison of the calculated values with the experimental values provides important information about the title compound. In addition, the electronic properties (UV-Vis calculations) of the title compound, such as HOMO-LUMO energy values and energy gap, absorption wavelengths, oscillator strengths were performed basing on the optimized structure in gas phase. Moreover, the molecular electrostatic potential surface, dipole moment, nonlinear optical properties, linear polarizabilities and first hyperpolarizabilities and chemical parameters have also been studied.

Author Biographies

N. Günay, Beykent University

Physics

Ö. Tamer, Sakarya University

Physics

D. Avcı, Sakarya University

Physics

E. Tarcan, Kocaeli University

Physics

Y. Atalay, Sakarya University

Physics

References

T. Willke. Methionine production—a critical review. Applied microbiology and biotechnology. 98 (2014) 9893-9914.

M.J. Frisch, H.P. Hratchian, and A.B. Nielsen. Gaussian 09: Programmer's Reference. gaussian, (2009).

R. Dennington, T. Keith, and J. Millam. GaussView, version 5. Semichem Inc.: Shawnee Mission, KS. (2009).

A.D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A. 38 (1988) 3098.

A.D. Becke. Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. The Journal of chemical physics. 104 (1996) 1040-1046.

C. Lee, W. Yang, and R.G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B. 37 (1988) 785.

J. Heyd, G.E. Scuseria, and M. Ernzerhof. Hybrid functionals based on a screened Coulomb potential. The Journal of chemical physics. 118 (2003) 8207-8215.

J. Heyd and G.E. Scuseria. Assessment and validation of a screened Coulomb hybrid density functional. The Journal of chemical physics. 120 (2004) 7274-7280.

J.P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Physical review letters. 77 (1996) 3865.

M.E. Ochoa, et al. Designed Synthesis and Crystallization of Isomorphic Molecular Gyroscopes with Cell-like Bilayer Self-Assemblies. Crystal Growth & Design. 18 (2018) 2795-2803.

F. London. Théorie quantique des courants interatomiques dans les combinaisons aromatiques. (1937).

R. McWeeny. Perturbation theory for the Fock-Dirac density matrix. Physical Review. 126 (1962) 1028.

R. Ditchfield. Self-consistent perturbation theory of diamagnetism: I. A gauge-invariant LCAO method for NMR chemical shifts. Molecular Physics. 27 (1974) 789-807.

K. Wolinski, J.F. Hinton, and P. Pulay. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society. 112 (1990) 8251-8260.

J.R. Cheeseman, et al. A comparison of models for calculating nuclear magnetic resonance shielding tensors. The Journal of chemical physics. 104 (1996) 5497-5509.

T. Keith and R. Bader. Calculation of magnetic response properties using atoms in molecules. Chemical physics letters. 194 (1992) 1-8.

T.A. Keith and R.F. Bader. Calculation of magnetic response properties using a continuous set of gauge transformations. Chemical physics letters. 210 (1993) 223-231.

P. Labra-Vázquez, et al. On the molecular structure of (E)-3-(9H-fluoren-2-yl)-1-(pyridin-2-yl) prop-2-en-1-one, theoretical calculations and SXRD studies. Journal of Molecular Structure. 1101 (2015) 116-123.

T. Pawlak, et al. Influence of Hydrogen/Fluorine Substitution on Structure, Thermal Phase Transitions, and Internal Molecular Motion of Aromatic Residues in the Crystal Lattice of Steroidal Rotors. Crystal Growth & Design. 20 (2020) 2202-2216.

E. Runge and E.K. Gross. Density-functional theory for time-dependent systems. Physical Review Letters. 52 (1984) 997.

R. Bauernschmitt and R. Ahlrichs. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters. 256 (1996) 454-464.

E. Gross, J. Dobson, and M. Petersilka: Density functional theory of time-dependent phenomena. In. Density functional theory II. Springer, (1996); 81-172.

K. Burke and E. Gross: A guided tour of time-dependent density functional theory. In. Density Functionals: Theory and Applications. Springer, (1998); 116-146.

M.E. Casida, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. The Journal of chemical physics. 108 (1998) 4439-4449.

M. Ponnuswamy and J. Trotter. N-Acetyl-dl-methionine, C7H13NO3S. Acta Crystallographica Section C: Crystal Structure Communications. 41 (1985) 917-919.

E.E. Kim, A. Sicignano, and K. Eriks. Binding of calcium to amino acids: the crystal structure of pentaaquobis (hydroxy-(L)-prolinato) calcium, Ca (C5H8O3N) 2.5 H2O. Journal of the American Chemical Society. 107 (1985) 6042-6046.

K. Moovendaran and S. Natarajan. Growth of bulk single crystal of N-acetyl DL-methionine and its spectral characterization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 135 (2015) 317-320.

W. He, et al. Molecular design of analogues of 2, 6-diamino-3, 5-dinitropyrazine-1-oxide. Journal of Molecular Structure: THEOCHEM. 668 (2004) 201-208.

N. Dege, et al. The synthesis, characterization and theoretical study on nicotinic acid [1-(2, 3-dihydroxyphenyl) methylidene] hydrazide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 120 (2014) 323-331.

B.G. Johnson, P.M. Gill, and J.A. Pople. The performance of a family of density functional methods. The Journal of chemical physics. 98 (1993) 5612-5626.

A.P. Scott and L. Radom. Harmonic vibrational frequencies: an evaluation of Hartree− Fock, Møller− Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. The Journal of Physical Chemistry. 100 (1996) 16502-16513.

H. Pir, et al. Molecular structure, vibrational spectra, NLO and NBO analysis of bis (8-oxy-1-methylquinolinium) hydroiodide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 96 (2012) 916-924.

C.-r. Zhang, H.-s. Chen, and G.-h. Wang. Structure and properties of semiconductor microclusters Ga~ nP~ n (n= 1-4): a first principle study. Chemical Research in Chinese Universities. 20 (2004) 640-646.

Y. Sun, et al. Nanoring structure and optical properties of Ga8As8. Chemical physics letters. 381 (2003) 397-403.

O. Christiansen, J. Gauss, and J.F. Stanton. Frequency-dependent polarizabilities and first hyperpolarizabilities of CO and H2O from coupled cluster calculations. Chemical physics letters. 305 (1999) 147-155.

D. Kleinman. Nonlinear dielectric polarization in optical media. Physical Review. 126 (1962) 1977.

D.A. Dixon and N. Matsuzawa. Density functional study of the structures and nonlinear optical properties of urea. The Journal of Physical Chemistry. 98 (1994) 3967-3977.

A.J. Garza, et al. Assessment of long-range corrected functionals for the prediction of non-linear optical properties of organic materials. Chemical Physics Letters. 575 (2013) 122-125.

L.T. Cheng, et al. Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. The Journal of Physical Chemistry. 95 (1991) 10631-10643.

W. Kumler and G.M. Fohlen. The Dipole Moment and Structure of Urea and Thiourea1. Journal of the American Chemical Society. 64 (1942) 1944-1948.

C. Teng and A. Garito. Dispersion of the nonlinear second-order optical susceptibility of organic systems. Physical Review B. 28 (1983) 6766.

M. Stähelin, D. Burland, and J. Rice. Solvent dependence of the second order hyperpolarizability in p-nitroaniline. Chemical physics letters. 191 (1992) 245-250.

R. Godby, M. Schlüter, and L. Sham. Self-energy operators and exchange-correlation potentials in semiconductors. Physical Review B. 37 (1988) 10159.

T. Koopmans. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica. 1 (1934) 104-113.

R.S. Mulliken. A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. The Journal of Chemical Physics. 2 (1934) 782-793.

R.G. Pearson. Hard and soft acids and bases. Journal of the American Chemical society. 85 (1963) 3533-3539.

R.G. Pearson. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. Journal of Chemical Education. 45 (1968) 581.

R.G. Pearson. Maximum chemical and physical hardness. Journal of chemical education. 76 (1999) 267.

A. Boyle. Tenderholt, and KM Langner. J. Comput. Chem. 29 (2008) 839.

P. Politzer and D.G. Truhlar. Chemical applications of atomic and molecular electrostatic potentials: reactivity, structure, scattering, and energetics of organic, inorganic, and biological systems. Springer Science & Business Media, (2013).

E. Scrocco and J. Tomasi: The electrostatic molecular potential as a tool for the interpretation of molecular properties. In. New concepts II. Springer, (1973); 95-170.

E. Scrocco and J. Tomasi: Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. In. Advances in quantum chemistry. Volume 11. Elsevier, (1978); 115-193.

P. Politzer and K. Daiker. Models for chemical reactivity. The force concept in chemistry. (1981) 294-387.

P. Politzer, P.R. Laurence, and K. Jayasuriya. Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environmental health perspectives. 61 (1985) 191-202.

P. Politzer and J.S. Murray. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts. 108 (2002) 134-142.

Downloads

Published

2020-11-05

How to Cite

[1]
N. Günay, Ö. Tamer, D. Avcı, E. Tarcan, and Y. Atalay, “Molecular modelling, spectroscopic characterization and nonlinear optical analysis on N-Acetyl-DL-methionine”, Rev. Mex. Fís., vol. 66, no. 6 Nov-Dec, pp. 749–760, Nov. 2020.

Issue

Section

04 Atomic and Molecular Physics