Analysis of an electroosmotic flow in wavy wall microchannels using the lubrication approximation

Authors

  • J. Arcos SEPI-ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas No. 682, Col. Santa Catarina, Alcaldía Azcapotzalco, 02250, CDMX.
  • O. Bautista SEPI-ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas No. 682, Col. Santa Catarina, Alcaldía Azcapotzalco, 02250, CDMX.
  • F. Méndez Departamento de Termofluidos, Facultad de Ingeniería, UNAM, 04510 CDMX.
  • M. Peralta Tecnológico de Estudios Superiores de Huixquilucan, Paraje el Río S/N, La Magdalena, Chichicaspa, 52773, Huixquilucan, Estado de México.

DOI:

https://doi.org/10.31349/RevMexFis.66.761

Keywords:

wavy wall microchannel, electroosmotic flow, lubrication theory, domain perturbation method

Abstract

We present the analysis of an electroosmotic flow (EOF) of a Newtonian fluid in a wavy-wall microchannel. In order to describe the flow and electrical fields, the lubrication and Debye-Hückel approximations are used. The simplified governing equations of continuity, momentum and Poisson-Boltzmann, together with the boundary conditions are presented in dimensionless form. For solving the mathematical problem, numerical and asymptotic techniques were applied. The asymptotic solution is obtained in the limit of very thin electric double layers (EDLs). We show that the lubrication theory is a powerful technique for solving the hydrodynamic field in electroosmotic flows in microchannels where the amplitude of the waviness changes on the order of the  mean semi-channel height. Approximate analytical expressions for the velocity components and pressure distribution are derived, and a closed formula for the volumetric flow rate is obtained.  The results show that the principal parameters that govern this EOF are the geometrical parameter, ε, which characterizes the waviness of the microchannel and the ratio of the mean semi-channel height to the thickness of the EDL, κ.

References

G. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows: fundamentals and simulation (Springer Science & Business Media, USA 2005).

H.A. Stone, A.D. Stroock, and A. Ajdari, Ann. Rev. Fluid Mech., 36 (2004) 381-441.

H. Bruus, Theoretical Microfluidics (Oxford University Press, Oxford 2008).

X. Xuan, B. Xu, and D. Li, Anal. Chem. 2, 77 (2005) 4323-4328.

L. Chen, A. T. Conlisk Biomed. Microdevices 10 (2008) 289-298.

S. Ghosal, Phys. Rev. E 74 (2006) 041901.

A. Adjari, Phys. Rev. Lett. 4 (1995) 755-759.

A. Adjari, Phys. Rev. E 53 (1996) 4996-5005.

A. E. Malevich, V. V. Mityushev, P. M. Adler, J. Colloid Interface Sci. 345 (2010) 72-87.

Z. Xia, R. Mei, M. Sheplak, Z. H. Fan, Microfluid. Nanofluid., 6 (2009) 37-52.

L. Martínez, O. Bautista , J. Escandón , F. Méndez, Colloids Surf. A Physicochem. Eng. Asp. 498 (2016) 7-19.

C.-K. Chen,C.-C. Cho, J. Colloid Interface Sci. 312 (2007) 470-480.

Ching-Chang Cho, Chieh-Li Chen, Cha’o-Kuang Chen, J. Non-Newton. Fluid Mech. 173 (2012)13-20.

D. Yang, Y. Liu, Colloids Surf. A-Physicochem. Eng. Asp., 328 (2008) 28-33.

S. Ghosal, J. Fluid Mech. 459 (2002) 103-128.

S. Ghosal, Electrophoresis 25 (2004) 214-228.

O. Bautista, S. Sánchez, J. Arcos, F. Méndez, J. Fluid Mech. 722 (2013) 496-532.

J. H. Masliyah, S. Bhattacharjee Electrokinetic and Colloid Transport Phenomena (Wiley-Interscience, USA 2006).

R. F. Probstein, Physicochemical hydrodynamics (John Wiley & Sons, USA1994).

A.T. Conlisk, Electrophoresis 26 (2005) 1896-1912.

J. D. Hoffman, Numerical Methods for Engineers and Scientists (CRC Press, USA 2001).

L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes (Cambridge University Press, Cambridge, 2007).

Downloads

Published

2020-11-05

How to Cite

[1]
J. Arcos, O. Bautista, F. Méndez, and M. Peralta, “Analysis of an electroosmotic flow in wavy wall microchannels using the lubrication approximation”, Rev. Mex. Fís., vol. 66, no. 6 Nov-Dec, pp. 761–770, Nov. 2020.