A Study on Microstructure and Magnetic Properties of Nanostructured CoxNi1-xMn0.5Fe1.5O4(x=0,0.25,0.5,0.75,1) Spinel Ferrites


  • Abid Hussain Department of Physics Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan-64200, Pakistan
  • Sofia Akbar Tahir Department of Physics Government College University Faisalabad-38000, Pakistan
  • Naseeb Ahmad Department of Physics Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan-64200, Pakistan
  • Muhammad Hashim Department of Physics Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan-64200, Pakistan
  • Amer Bashir Ziya Department of Physics Bahauddin Zakariya University Multan-60800, Pakistan
  • Shahzadi Noreen Department of Physics Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan-64200, Pakistan




sol-gel technique, spinel structure, X-ray diffraction, scanning electron microscopy, coercivity, remanence


A low-temperature synthesis of novel nanostructured CoxNi1-xMn0.5Fe1.5O4(x=0,0.25,0.5,0.75,1) ferrites was carried out by sol-gel auto-combustion technique. The obtained nanostructured ferrites were investigated by employing the techniques of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometry (VSM). The XRD diffractograms of the prepared ferrites revealed the formation of a spinel phase with face centered cubic (fcc) structure belonging to Fd- m space group.  The average lattice parameter ‘a’ of ferrites exhibited a rise versus a rise in Co2+ concentration in accordance with the Vegard’s law. The SEM investigation of NiMn0.5Fe1.5O4 powder revealed an existence of octahedral-shaped morphology of ferrite grains. The TEM investigation of NiMn0.5Fe1.5O4 powder showed nanostructures of ferrite particles with sizes consistent with the crystallite sizes as estimated by Debye-Scherer’s formula. An EDX spectrum of NiMn0.5Fe1.5O4 powder confirmed its elemental composition. The M-H hysteresis loops recorded by VSM at room temperature revealed a dependence of coercivity (Hc), maximum magnetization (Mmax) and retentivity (Mr) on Co2+concentration. Due to the shape dependence of M-H loops on Co2+ concentration in compounds enabled their candidature for applications in memory devices and magnetic sensors.


J.-L. Ortiz-Quiñonez, U. Pal, M. S. Villanueva, Structural, Magnetic, and Catalytic Evaluation of Spinel Co, Ni, and Co–Ni Ferrite Nanoparticles Fabricated by Low-Temperature Solution Combustion Process. ACS Omega 3, 14986-15001 (2018); published online Epub2018/11/30 (10.1021/acsomega.8b02229).

C. Dong, G. Wang, D. Guo, C. Jiang, D. Xue, Growth, structure, morphology, and magnetic properties of Ni ferrite films. Nanoscale Research Letters 8, 196 (2013); published online Epub2013/04/27 (10.1186/1556-276X-8-196).

D. S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical Engineering Journal 129, 51-65 (2007); published online Epub2007/05/01/ (https://doi.org/10.1016/j.cej.2006.11.001).

V. Mameli, M. S. Angotzi, C. Cara, C. Cannas, Liquid Phase Synthesis of Nanostructured Spinel Ferrites—A Review. Journal of Nanoscience and Nanotechnology 19, 4857-4887 (2019); published online Epub// (10.1166/jnn.2019.16808).

R. Srivastava, B. Yadav, Ferrite Materials: Introduction, Synthesis Techniques, and Applications as Sensors. International Journal of Green Nanotechnology 4, (2012); published online Epub06/15 (10.1080/19430892.2012.676918).

V. R. Bhagwat, A. V. Humbe, S. D. More, K. M. Jadhav, Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: Different fuels approach. Materials Science and Engineering: B 248, 114388 (2019); published online Epub2019/09/01/ (https://doi.org/10.1016/j.mseb.2019.114388).

S. E. Shirsath, S. S. Jadhav, M. L. Mane, S. Li, in Handbook of Sol-Gel Science and Technology, L. Klein, M. Aparicio, A. Jitianu, Eds. (Springer International Publishing, Cham, 2017), pp. 1-41.

I. T K, P. Lakshmi, Magnetic Nanoparticles – A Review. Int. J. Pharm. Sci. Nanotechnol 3, (2009); published online Epub11/30

P. Kumar, P. Mishra, S. Sahu, Synthesis of Ni-Zn Ferrites Using Low Temperature Sol-Gel Process. (2011); published online Epub08/01

I. Starko, T. Tatarchuk, M. Bououdina, La-doped Ni 0.5 Co 0.5 Fe 2 O 4 nanoparticles: effect of cobalt precursors on structure and morphology. Molecular Crystals and Liquid Crystals 674, 110-119 (2018); published online Epub10/13 (10.1080/15421406.2019.1578517)


N. G. Deshpande, C. H. Ahn, D. S. Kim, S. H. Jung, Y. B. Kim, H. K. Cho, Bifunctional reusable Co0.5Ni0.5Fe2O4 nanoparticle-grafted carbon nanotubes for aqueous dye removal from contaminated water. Catalysis Science & Technology, (2020)10.1039/D0CY01057J).

D. M. Coutinho, V. M. S. Verenkar, Preparation, spectroscopic and thermal analysis of hexa-hydrazine nickel cobalt ferrous succinate precursor and study of solid-state properties of its nanosized thermal product, Ni0.5Co0.5Fe2O4. Journal of Thermal Analysis and Calorimetry 128, 807-817 (2017); published online Epub2017/05/01 (10.1007/s10973-016-6011-8).

A. V. Humbe, J. S. Kounsalye, S. B. Somvanshi, A. Kumar, K. M. Jadhav, Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn Teller ion (Cu2+) substitution. Materials Advances 1, 880-890 (2020)10.1039/D0MA00251H).

W. Agami, M. Ashmawy, Structural, physical, and magnetic properties of nanocrystalline manganese-substituted lithium ferrite synthesized by sol–gel autocombustion technique. Applied Physics A 126, (2020); published online Epub06/26 (10.1007/s00339-020-03737-6).

K. Vijaya Babu, G. Satyanarayana, B. Sailaja, G. V. Santosh Kumar, K. Jalaiah, M. Ravi, Structural and magnetic properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) nano-crystalline ferrites. Results in Physics 9, 55-62 (2018); published online Epub2018/06/01/ (https://doi.org/10.1016/j.rinp.2018.01.048).

R. Muchakayala, D. P. Shibeshi, Effect of zinc substitution on the structural, electrical and magnetic properties of nano-structured Ni0.5Co0.5Fe2O4 ⁠ ferrites. Physica B Condensed Matter 534, (2018); published online Epub01/11 (10.1016/j.physb.2018.01.022).

M. K. Kokare, N. A. Jadhav, Y. Kumar, K. M. Jadhav, S. M. Rathod, Effect of Nd3+ doping on structural and magnetic properties of Ni0.5Co0.5Fe2O4 nanocrystalline ferrites synthesized by sol-gel auto combustion method. Journal of Alloys and Compounds 748, 1053-1061 (2018); published online Epub2018/06/05/ (https://doi.org/10.1016/j.jallcom.2018.03.168).

W. Liu, G. Tan, G. Dong, H. Ren, A. Xia, Influence of multi-ion co-doping and NiFe2O4 layer on the properties of BiFeO3/NiFe2O4 composite films by sol–gel. Materials Letters 142, 27-29 (2015); published online Epub2015/03/01/ (https://doi.org/10.1016/j.matlet.2014.11.141).

H. Saqib, S. Rahman, R. Susilo, B. Chen, N. Dai, Structural, vibrational, electrical, and magnetic properties of mixed spinel ferrites Mg1-xZnxFe2O4 nanoparticles prepared by co-precipitation. AIP Advances 9, 055306 (2019); published online Epub2019/05/01 (10.1063/1.5093221).

H. Shokrollahi, L. Avazpour, Influence of intrinsic parameters on the particle size of magnetic spinel nanoparticles synthesized by wet chemical methods. Particuology 26, 32-39 (2016); published online Epub2016/06/01/ (https://doi.org/10.1016/j.partic.2015.10.004).

P. Thakur, A. Thakur, M. Singh, Effect of particle size on the properties of Mn–Zn–In ferrites. 77, 25701-25705 (2008); published online Epub01/01

G. Padmapriya, A. Manikandan, V. Krishnasamy, S. K. Jaganathan, S. A. Antony, Spinel NixZn1−xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye. Journal of Molecular Structure 1119, 39-47 (2016); published online Epub2016/09/05/ (https://doi.org/10.1016/j.molstruc.2016.04.049).

L. Zheng, K. Fang, M. Zhang, Z. Nan, L. Zhao, D. Zhou, M. Zhu, W. Li, Tuning of spinel magnesium ferrite nanoparticles with enhanced magnetic properties. RSC Advances 8, 39177-39181 (2018)10.1039/C8RA07487A).

N. Deraz, A. Alarifi, Synthesis and Physicochemical Properties of Nanomagnetic Zinc Ferrite System. International Journal of Electrochemical Science 7, (2012); published online Epub05/01

W. Wang, Z. Ding, X. Zhao, S. Wu, F. Li, M. Yue, J. P. Liu, Microstructure and magnetic properties of MFe2O4 (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method. Journal of Applied Physics 117, 17A328 (2015); published online Epub2015/05/07 (10.1063/1.4917463).

Z. Xu, J. Fan, T. Liu, Y. Han, H. Zhang, Calcination induced phase transformation in MnZn ferrite powders. Journal of Alloys and Compounds 814, 152307 (2020); published online Epub2020/01/25/ (https://doi.org/10.1016/j.jallcom.2019.152307).

Z. Xu, J. Fan, Y. Han, T. Liu, H. Zhang, K. Song, C. Zhang, Preparation and characterization of Mn–Zn ferrites via nano-in-situ composite method. Solid State Sciences 98, 106006 (2019); published online Epub2019/12/01/ (https://doi.org/10.1016/j.solidstatesciences.2019.106006).

T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, Optical, and Magnetic Properties of Zn-Doped CoFe(2)O(4) Nanoparticles. Nanoscale research letters 12, 141-141 (2017)10.1186/s11671-017-1899-x).

M. Lakshmi, K. Vijaya Kumar, K. Thyagarajan, An investigation of structural and magnetic properties of Cr–Zn ferrite nanoparticles prepared by a sol–gel process. Journal of Nanostructure in Chemistry 5, 365-373 (2015); published online Epub2015/12/01 (10.1007/s40097-015-0168-8).

L. T. Lu, N. T. Dung, L. D. Tung, C. T. Thanh, O. K. Quy, N. V. Chuc, S. Maenosono, N. T. K. Thanh, Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale 7, 19596-19610 (2015)10.1039/C5NR04266F).

T. Petrova, N. Velinov, D. Filkova, I. Ivanova, I. Ivanov, I. Yordanova, S. Todorova, V. Idakiev, N. Petrov, I. Mitov, Synthesis and characterization of supported spinel ferrite catalysts. Journal of Chemical Technology and Metallurgy 53, 1186-1194 (2018); published online Epub01/01

S. Modak, M. Ammar, F. Mazaleyrat, S. Das, P. K. Chakrabarti, XRD, HRTEM and magnetic properties of mixed spinel nanocrystalline Ni–Zn–Cu-ferrite. Journal of Alloys and Compounds 473, 15-19 (2009); published online Epub2009/04/03/ (https://doi.org/10.1016/j.jallcom.2008.06.020).

D. R. Kumar, S. I. Ahmad, C. A. Lincoln, D. Ravinder, Structural, optical, room-temperature and low-temperature magnetic properties of Mg–Zn nanoferrite ceramics. Journal of Asian Ceramic Societies 7, 53-68 (2019); published online Epub2019/01/02 (10.1080/21870764.2018.1563036).

R. S. Pandav, R. P. Patil, S. S. Chavan, I. S. Mulla, P. P. Hankare, Magneto-structural studies of sol–gel synthesized nanocrystalline manganese substituted nickel ferrites. Journal of Magnetism and Magnetic Materials 417, 407-412 (2016); published online Epub2016/11/01/ (https://doi.org/10.1016/j.jmmm.2016.04.090).

M. A. Rafiq, A. Javed, M. N. Rasul, M. A. Khan, A. Hussain, Understanding the structural, electronic, magnetic and optical properties of spinel MFe2O4 (M = Mn, Co, Ni) ferrites. Ceramics International 46, 4976-4983 (2020); published online Epub2020/03/01/ (https://doi.org/10.1016/j.ceramint.2019.10.237).

A. Hussain, T. Abbas, S. Niazi, Preparation of Ni1−xMnxFe2O4 ferrites by sol–gel method and study of their cation distribution. Ceramics International 39, 1221–1225 (2013); published online Epub03/01 (10.1016/j.ceramint.2012.07.049).

L. C. Xue, L. L. Lang, J. Xu, Z. Z. Li, W. H. Qi, G. D. Tang, L. Q. Wu, Magnetic moment directions and distributions of cations in Cr (Co) substituted spinel ferrites Ni0.7Fe2.3O4. AIP Advances 5, 097167 (2015); published online Epub2015/09/01 (10.1063/1.4931919).

F. Gomes da Silva, J. Depeyrot, A. Campos, R. Aquino, D. Fiorani, D. Peddis, Structural and Magnetic Properties of Spinel Ferrite Nanoparticles. Journal of Nanoscience and Nanotechnology 19, 1-15 (2019); published online Epub08/01 (10.1166/jnn.2019.16877).

N. N. Mojumder, C. Augustine, D. E. Nikonov, K. Roy, Effect of quantum confinement on spin transport and magnetization dynamics in dual barrier spin transfer torque magnetic tunnel junctions. Journal of Applied Physics 108, 104306 (2010); published online Epub2010/11/15 (10.1063/1.3503882).

U. Salazar-Kuri, J. O. Estevez, N. R. Silva-González, U. Pal, M. E. Mendoza, Structure and magnetic properties of the Co1-xNixFe2O4-BaTiO3 core-shell nanoparticles. Journal of Magnetism and Magnetic Materials 442, 247-254 (2017); published online Epub2017/11/15/ (https://doi.org/10.1016/j.jmmm.2017.06.126).

H. Y. He, Structural and Magnetic Property of Co1-xNixFe2O4 Nanoparticles Synthesized by Hydrothermal Method. International Journal of Applied Ceramic Technology 11, (2014); published online Epub07/01 (10.1111/ijac.12071).




How to Cite

A. Hussain, S. A. Tahir, N. Ahmad, M. Hashim, A. B. Ziya, and S. Noreen, “A Study on Microstructure and Magnetic Properties of Nanostructured CoxNi1-xMn0.5Fe1.5O4(x=0,0.25,0.5,0.75,1) Spinel Ferrites”, Rev. Mex. Fís., vol. 67, no. 3 May-Jun, pp. 527–535, May 2021.