A simulation study on the effect of size gold nanoparticles on broadband light absorption in dye-sensitised solar cells


  • K. Wasman Qadir "Computation Nanotechnology Research Lab (CNRL), Department of Physics, College of Education, Salahaddin University-Erbil, Erbil 44002, Kurdistan Region, Iraq" http://orcid.org/0000-0002-4416-2103




, Plasmonic effect, Finite-Difference Time-Domain (FDTD) Simulations, Gold (Au) Nanoparticles (NPs), Dye-Sensitised Solar Cells (DSSCs), Titania (TiO2).


Plasmon-assisted energy conversion in dye-sensitised solar cells (DSSCs) has been achieved by applying gold (Au) nanoparticles (NPs) inside Titania (TiO2) photoanodes. Gold nanoparticles (GNPs) were introduced into DSSCs to further enhance their power conversion efficiency (PCE). In this research work, an effort has been made to enhance the optical absorption and improve the performance of DSSCs. By utilising finite-difference time-domain (FDTD) software, GNPs with radii of 15, 25, 35, 45, 55, 65, 75 and 85 nm were produced and introduced into the TiO2 photoanode. The optimum radius for the optical absorption enhancement was found to be 85 nm because the effect of plasmon coupling is more significant for metal nanoparticle sizes > 60 nm. The effect of various sizes of GNPs on light scattering has also been presented in this study. Moreover, the investigation has focused on the role of incident angle of light source on the absorption in TiO2 films. It was found that the optimum incident angle for the enhancement of broadband optical absorption in the wavelength range of 450–800 nm is 70°.

Author Biography

K. Wasman Qadir, "Computation Nanotechnology Research Lab (CNRL), Department of Physics, College of Education, Salahaddin University-Erbil, Erbil 44002, Kurdistan Region, Iraq"

Karwan Wasman Qadir from Kurdistan Region-Iraq. Has M.Sc. in Solar Radiation. He is Researcher & Lecturer at Salahaddin University-Erbil, 44002 Erbil, Kurdistan Region-Iraq since 2010. His PhD has been received at the University of Malaya, KL, Malaysia. Current research interests are Dye-Sensitized Photosensor, DSSCs, organic device physics, semiconducting polymers and organic materials. His research activities mainly involved in the fabrication and characterization of organic solar photovoltaic devices, Perovskite Solar Cells and Organic Humidity Sensors.


Eli, D., P. Gyuk, M. Ahmad, G. Baba, and S. Sarki, International Journal of Materials Science and Applications. 5 (2016) 214-221.

Zhang, D., M. Wang, A.G. Brolo, J. Shen, X. Li, and S. Huang, Journal of Physics D: Applied Physics. 46 (2012) 024005.

Wan, T., S. Ramakrishna, and Y. Liu, Journal of Applied Polymer Science. 135 (2018) 45649.

Zhang, L. and Z.-S. Wang, Journal of Materials Chemistry C. 4 (2016) 3614-3620.

Chander, N., A. Khan, E. Thouti, S.K. Sardana, P. Chandrasekhar, V. Dutta, and V.K. Komarala, Solar Energy. 109 (2014) 11-23.

Sun, S., P. Song, J. Cui, and S. Liang, Catalysis Science & Technology. 9 (2019) 4198-4215.

Selvapriya, R., J. Mayandi, V. Ragavendran, V. Sasirekha, J. Vinodhini, and J.M. Pearce, Ceramics International. 45 (2019) 7268-7277.

Andrei, C., E. Lestini, S. Crosbie, C. de Frein, T. O'Reilly, and D. Zerulla, PLoS One. 9 (2014) e109836.

Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Nature. 499 (2013) 316-319.

Chander, N., A.F. Khan, E. Thouti, S.K. Sardana, P.S. Chandrasekhar, V. Dutta, and V.K. Komarala, Solar Energy. 109 (2014) 11-23.

Yao, Y., F. Lv, L. Luo, L. Liao, G. Wang, D. Liu, C. Xu, G. Zhou, X. Zhao, and Q. Song, Solar RRL. (2019) 1900396.

Wang, Q., T. Butburee, X. Wu, H.J. Chen, G. Liu, and L.Z. Wang, Journal of Materials Chemistry A. 1 (2013) 13524-13531.

Karwan, W., Z. Ahmad, K. Sulaiman, C.C. Yap, and F. Touati, Synthetic Metals. 210, Part B (2015) 392-397.

Selvaraj, P., H. Baig, T.K. Mallick, J. Siviter, A. Montecucco, W. Li, M. Paul, T. Sweet, M. Gao, A.R. Knox, and S. Sundaram, Solar Energy Materials and Solar Cells. 175 (2018) 29-34.

Luque, A. and S. Hegedus, Handbook of photovoltaic science and engineering. 2011: John Wiley & Sons.

Saravanan, S., R. Kato, M. Balamurugan, S. Kaushik, and T. Soga, Journal of Science: Advanced Materials and Devices. 2 (2017) 418-424.

Beck, F., A. Polman, and K. Catchpole, Journal of Applied Physics. 105 (2009) 114310.

Pantho, M.J.H., N.A. Junnat, and M.J. Alam. Design and analysis the characteristics of a cost-effective polymer based bulk heterojunction tandem solar cell. in 8th International Conference on Electrical and Computer Engineering. 2014. IEEE.

Mayumi, S., Y. Ikeguchi, D. Nakane, Y. Ishikawa, Y. Uraoka, and M. Ikeguchi, Nanoscale research letters. 12 (2017) 513.

O’Connor, B., K.H. An, K.P. Pipe, Y. Zhao, and M. Shtein, Applied Physics Letters. 89 (2006) 233502.

Agrawal, M. and P. Peumans, Optics express. 16 (2008) 5385-5396.

Ko, D.-H., J.R. Tumbleston, L. Zhang, S. Williams, J.M. DeSimone, R. Lopez, and E.T. Samulski, Nano letters. 9 (2009) 2742-2746.

Tumbleston, J.R., D.-H. Ko, E.T. Samulski, and R. Lopez, Optics express. 17 (2009) 7670-7681.

Park, H.J., T. Xu, J.Y. Lee, A. Ledbetter, and L.J. Guo, Acs Nano. 5 (2011) 7055-7060.

Na, S.I., S.S. Kim, J. Jo, S.H. Oh, J. Kim, and D.Y. Kim, Advanced Functional Materials. 18 (2008) 3956-3963.

Niggemann, M., M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, Thin Solid Films. 451 (2004) 619-623.

Song, D.H., H.-S. Kim, J.S. Suh, B.-H. Jun, and W.-Y. Rho, Nanomaterials. 7 (2017) 136.

Yuan, L., F.Y. Chen, C.F. Zheng, J. Liu, and N. Alemu, Physica Status Solidi a-Applications and Materials Science. 209 (2012) 1376-1379.

Qadir, R.W. and K.W. Qadir, Eurasian Journal of Science and Engineering. 4 (2019) 49-54.

Qadir, R.W., Z. Ahmad, and K. Sulaiman, Journal of Modern Optics. 61 (2014) 636-640.

Qadir, R.W., K.W. Qadir, and S.B. Aziz, ZANCO Journal of Pure and Applied Sciences. 31 (2019) 44-48.

Cushing, S.K. and N. Wu, The Electrochemical Society Interface. 22 (2013) 63-67.

Jung, H., B. Koo, J.-Y. Kim, T. Kim, H.J. Son, B. Kim, J.Y. Kim, D.-K. Lee, H. Kim, J. Cho, and M.J. Ko, ACS Applied Materials & Interfaces. 6 (2014) 19191-19200.

Sahoo, G.P., H. Bar, D.K. Bhui, P. Sarkar, S. Samanta, S. Pyne, S. Ash, and A. Misra, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 375 (2011) 30-34.

Nehl, C.L., H. Liao, and J.H. Hafner, Nano letters. 6 (2006) 683-688.

Gu, M., Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M.J. Ventura, and Z. Shi, Nanophotonics. 1 (2012) 235-248.

Wang, Z., U. Helmersson, and P.-O. Käll, Thin Solid Films. 405 (2002) 50-54.

Chiu, N.-F., Y.-C. Tu, and T.-Y. Huang, Sensors. 14 (2014) 170-187.

Shanmugam, M., M.F. Baroughi, and D. Galipeau, Electronics letters. 45 (2009) 648-649.

Rodríguez-Lorenzo, L., R.A. Alvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L.M. Liz-Marzán, and F.J. García de Abajo, Journal of the American Chemical Society. 131 (2009) 4616-4618.




How to Cite

K. W. Qadir, “A simulation study on the effect of size gold nanoparticles on broadband light absorption in dye-sensitised solar cells”, Rev. Mex. Fís., vol. 67, no. 3 May-Jun, pp. 509–515, May 2021.