Multilayer shallow-water model with stratification and shear

Authors

DOI:

https://doi.org/10.31349/RevMexFis.67.351

Keywords:

Inhoomogeneous layers, stratification, shear, upper ocean, mixed layer, dynamics, thermodynamics.

Abstract

The purpose of this paper is to present a shallow-water-type model with multiple inhomogeneous layers featuring variable linear velocity vertical shear and startificaion in horizontal space and time. This is achieved by writing the layer velocity and buoyancy fields as linear functions of depth, with coefficients that depend arbitrarily on horizontal position and time. The model is a generalization of Ripa's (1995) single-layer model to an arbitrary number of layers. Unlike models with homogeneous layers the present model is able to represent thermodynamics processes driven by heat and freshwater fluxes through the surface or mixing processes resulting from fluid exchanges across contiguous layers. By contrast with inhomogeneous-layer models with depth-independent velocity and buoyancy, the model derived here can sustain explicitly at low frequency a current in thermal wind balance (between the vertical vertical shear and the horizontal density gradient) within each layer. In the absence of external forcing and dissipation, energy, volume, mass, and buoyancy variance constrain the dynamics; conservation of total zonal momentum requires in addition the usual zonal symmetry of the topography and horizontal domain.  The inviscid, unforced model admits a formulation suggestive of a generalized Hamiltonian structure, which enables the classical connection between symmetries and conservation laws via Noether's theorem.  A steady solution to a system involving one Ripa-like layer and otherwise homogeneous layers can be proved formally (or Arnold) stable using the above invariants. A model configuration with only one layer has been shown previously to provide: a very good representation of the exact vertical normal modes up to the first internal mode; an exact representation of long-perturbation (free boundary) baroclinic instability; and a very reasonable representation of short-perturbation (classical Eady) baroclinic instability. Here it is shown that substantially more accurate overall results with respect to single-layer calculations can be achieved by considering a stack of only a few layers. A similar behavior is found in ageostrophic (classical Stone) baroclinic instability by describing accurately the dependence of the solutions on the Richardson number with only two layers.

References

Abarbanel H., Holm D., Marsden J., and Ratiu T. [1986]. Philos. Trans. R. Soc. London, A 318, 349–409. Anderson D. L. T., and McCreary J. P. [1985]. J. Atmos. Sci. 42, 615–629.

Arnold V. I. [1965]. Dokl. Akad. Nauk. SSSR 162, 975–978, engl. transl. Sov. Math. 6: 773-777 (1965). Arnold V. I. [1966]. Izv. Vyssh. Uchebn. Zaved Mat. 54, 3–5, engl. transl. Am. Math. Soc. Transl. Ser. 2 79:

-269 (1969).

Beier E. [1997]. J. Phys. Oceanogr. 27, 615–632.

Beier E., and Ripa P. [1999]. J. Phys. Oceanogr. 29, 305–311.

Benilov E. [1993]. J. Fluid Mech. 251, 501–514.

Beron-Vera F. J., Ochoa J., and Ripa P. [1999]. Ocean Modell. 1, 111–118.

Beron-Vera F. J., Olascoaga M. J., and Zavala-Garay J. [2004]. In ICTAM04 Abstract Book and CD-ROM

Proceedings. ISBN 83-89687-01-1, IPPT PAN, Warsaw.

Beron-Vera F. J., and Ripa P. [1997]. J. Fluid Mech. 352, 245–264.

Beron-Vera F. J., and Ripa P. [2000]. J. Geophys. Res. 105, 11441–11457.

Beron-Vera F. J., and Ripa P. [2002]. J. Geophys. Res. 107 (C8), 10.1029/2000JC000769.

Boccaletti G., Ferrari R., and Fox-Kemper B. [2007]. J. Phys. Oceanogr. 37, 2228–2250.

Britton J., and Xing Y. [2020]. Journal of Scientific Computing 82, 2.

Br ̈ocker J., et al. [2018]. Mathematics of Planet Earth: A Primer. World Scientific.

Cotter C., Crisan D., Holm D., Pan W., and Shevchenko I. [2020]. J. Stat. Phys. 179, 1186 – 1221.

Dellar P. J. [2003]. Phys. Fluids 15, 292–297.

Desveaux V., Zenk M., Berthon C., and Klingenberg C. [2015]. Mathematics of Computation 85, 1. Dronkers J. [1969]. J. Hydrau. Div. 95, 44–77.

Fukamachi Y., McCreary J. P., and Proehl J. A. [1995]. J. Geophys. Res. 100, 2559–2577.

Gouzien E., Lahaye N., Zeitlin V., and Dubos T. [2017]. Physics of Fluids 29, 101702.

Haine T. W., and Marshall J. [1998]. J. Phys. Oceanogr. 28, 634–658.

Holm D., Marsden J., Ratiu T., and Weinstein A. [1983]. Phys. Lett. A 98, 15–21.

Holm D. D. [1996]. Physica D 98, 379–414.

Holm D. D. [2015]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences

, 20140963.

Holm D. D., and Luesink E. [2020]. arXiv:1910.10627.

Holm D. D., Luesink E., and Pan W. [2020]. arXiv:2006.05707.

Holm D. D., Marsden J. E., and Ratiu T. S. [2002]. In Large-Scale Atmosphere-Ocean Dynamics II: Geometric

Methods and Models (ed. J. Norbury and I. Roulstone), pp. 251–299. Cambridge University. Lahaye N., Zeitlin V., and Dubos T. [2020]. Ocean Modelling 153, 101673.

Lavoie R. [1972]. J. Atmos. Sci. 29, 1025 – 1040.

McCreary J. P., Fukamachi Y., and Kundu P. [1991]. J. Geophys. Res. 96, 2515–2534. McCreary J. P., et al. [2001]. J. Geophys. Res. 106, 7139–7155.

McCreary J. P., and Kundu P. [1988]. J. Mar. Res. 46, 25–58.

McCreary J. P., Zhang S., and Shetye S. R. [1997]. J. Geophys. Res. 102, 15,535–15,554.

McIntyre M., and Shepherd T. [1987]. J. Fluid Mech. 181, 527–565.

McWilliams J. C. [2016]. Proc R Soc A 472, 20160117.

Morrison P. J. [1982]. In Mathematical Methods in Hydrodynamics and Integrability in Dynamical Systems

(ed. M. Tabor and Y. Treve), pp. 13–46. Institute of Physics Conference Proceedings 88.

O’Brien J. J., and Reid R. O. [1967]. J. Atmos. Sci. 24, 197–207.

Palacios-Hern ́andez E., Beier E., Lav ́ın M. F., and Ripa P. [2002]. J. Phys. Oceanogr. 32, 705–728. Pedlosky J. [1987]. Geophysical Fluid Dynamics, 2nd edn. Springer.

Rehman A., Ali I., and Qamar S. [2018]. Results in Physics 8, 104 – 113.

Ripa P. [1993]. Geophys. Astrophys. Fluid Dyn. 70, 85–111.

Ripa P. [1994]. In Modelling of Oceanic Vortices (ed. G. V. Heist), pp. 151–159.

Ripa P. [1995]. J. Fluid Mech. 303, 169–201.

Ripa P. [1996a]. J. Geophys. Res. C 101, 1233–1245.

Ripa P. [1996b]. Rev. Mex. F ́ıs. 42, 117–135.

Ripa P. [1997]. J. Phys. Oceanogr. 27, 597–614.

Ripa P. [1999]. Dyn. Atmos. Oceans 29, 1–40.

Ripa P. [2001]. In Proceedings of the 13th Conference on Atmospheric and Oceanic Fluid Dynamics, pp. 1–4.

American Meteorological Society.

Ripa P. [2003]. In Nonlinear Processes in Geophysical Fluid Dynamics: A Tribute to the Scientific Work of

Pedro Ripa (ed. O. U. Velasco-Fuentes, J. Ochoa and J. Sheinbaum), pp. 103–126. Kluwer. Plublished

post mortem.

Salmon R. [2004]. J. Atmos. Sci. 61, 2,016–2,036.

Sanchez-Linares C., de Luna T. M., and Castro Diaz M. J. [2016]. Applied Mathematics and Computation

, 369–384.

Schopf P., and Cane M. [1983]. J. Phys. Oceanogr. 13, 917–935.

Scott R. B., and Willmott A. J. [2002]. Dyn. Atmos. Oce. 35, 389–419.

Shepherd T. [1990]. Adv. Geophys. 32, 287–338.

Stone P. H. [1966]. J. Atmos. Sci. 23, 390–400.

Stone P. H. [1970]. J. Atmos. Sci. 27, 721–726.

Tandon A., and Garrett C. [1994]. J. Phys. Oceanogr. 24, 1419–1424.

Warnerford E. S., and Dellar P. J. [2013]. J. Fluid Mech. 723, 374–403.

Warren B. A. [1999]. J. Geophys. Sci. 104, 7915–7919.

Young W. [1994]. J. Phys. Oceanogr. 24, 1812–1826.

Young W., and Chen L. [1995]. J. Phys. Oceanogr. 25, 3172–3185.

Zavala-Hidalgo, J. J., Pares-Sierra A., and Ochoa J. [2002]. Atmosfera 15, 81 – 104.

Zeitlin V. [2018]. Geophysical fluid dynamics: understanding (almost) everything with rotating shallow water

models. Oxford University Press.

Downloads

Published

2021-05-01

How to Cite

[1]
F. J. Beron-Vera, “Multilayer shallow-water model with stratification and shear”, Rev. Mex. Fís., vol. 67, no. 3 May-Jun, pp. 351–364, May 2021.