Cu 4O3 thin films deposited by non-reactive rf-magnetron sputtering from a copper oxide target

Authors

  • M. A. Cruz Almazán TESJo
  • E. Vigueras Santiago
  • R. López Tecnológico de Estudios Superiores de Jocotitlán http://orcid.org/0000-0001-8341-3684
  • S. Hernández López UAEMEX
  • V. Hugo Castrejón Sánchez TESJo
  • A. Esparza UNAM
  • C. Encarnación Gómez Universidad Juárez Autónoma de Tabasco

DOI:

https://doi.org/10.31349/RevMexFis.67.495

Keywords:

paramelaconite, Cu​4​O​3​, non reactive sputtering, thermal oxidation

Abstract

Copper oxide thin films deposited by sputtering are frequently formed by using metal copper targets in reactive atmospheres. In this report, paramelaconite (Cu4O3) thin films were deposited by non-reactive rf magnetron sputtering. The target used for sputtering was a copper oxide disk fabricated by oxidation of metal copper at 1000 °C for 24 h in air
atmosphere. X-ray diffraction (XRD) results showed that the copper oxide target was mainly composed of cupric oxide (CuO) and cuprous oxide (Cu2O) crystals. Raman analyses suggested that the surface of the copper oxide disk is composed by a (CuO) layer. XRD measurements performed to the copper oxide thin films deposited by non-reactive rf magnetron sputtering showed that the film is composed of (Cu4O3) crystals. However,
Raman measurements indicated that the Cu4O3 thin films are also composed by amorphous CuO and Cu2O.



Author Biographies

E. Vigueras Santiago

UAEMEX

R. López, Tecnológico de Estudios Superiores de Jocotitlán

Full Time Professor, División de Ingeniería Mecatrónica.

References

Dolai, R. Dey, S. Das, S. Hussain, R. Bhar, A.K. Pal, Cupric oxide (CuO) thin films prepared by reactive d.c. magnetron sputtering technique for photovoltaic application,

Journal of Alloys and Compounds,​724​ (2017) 456-464.

https://doi.org/10.1016/j.jallcom.2017.07.06​1.

A.O Musa, T Akomolafe, M.J Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties, Solar Energy

Materials and Solar Cells, ​51 ​(1998) 305-316.

https://doi.org/10.1016/S0927-0248(97)00233-X.

Zhelong Jiang, Shiliang Tian, Shuqi Lai, Rebecca D. McAuliffe, Steven P. Rogers, Moonsub Shim, and Daniel P. Shoemaker, Capturing Phase Evolution during Solvothermal

Synthesis of Metastable Cu4O3, Chemistry of Materials ​28​ (2016) 3080-3089.

DOI: 10.1021/acs.chemmater.6b00421

Smith, D. et al., Penn State University, University Park, Pennsylvania, USA., ICDD Grant-in-Aid, (1979).

Kim, H.-S., Kumar, M. D., Park, W.-H., Patel, M., & Kim, J. Cu 4 O 3 -based all metal oxides for transparent photodetectors. Sensors and Actuators A: Physical, ​253 (2017) 35–40.

doi:10.1016/j.sna.2016.11.020

Martić, N., Reller, C., Macauley, C., Löffler, M., Schmid, B., Reinisch, D., Volkova E., Maltenberger A., Rucki A., Mayrhofer K., Schmid, G.,Paramelaconite-Enriched

Copper-Based Material as an Efficient and Robust Catalyst for Electrochemical Carbon Dioxide Reduction. Advanced Energy Materials, ​9 ​ (2019) 1901228.

doi:10.1002/aenm.201901228

Thanuja, J., Udayabhanu, Nagaraju, G., Raja Naika H, Biosynthesis of Cu4O3 nanoparticles using Razma seeds: application to antibacterial and cytotoxicity activities. SN

Appl. Sci. ​1 ​(2019) 1646.

https://doi.org/10.1007/s42452-019-1556-3

Zhelong Jiang, Shiliang Tian, Shuqi Lai, Rebecca D. McAuliffe, Steven P. Rogers, Moonsub Shim, and Daniel P. Shoemaker, Capturing Phase Evolution during Solvothermal

Synthesis of Metastable Cu4O3, Chemistry of Materials, ​28​ (2016) 3080-3089.

DOI: 10.1021/acs.chemmater.6b00421

Arreguín-Campos, M., Campos-Gonzalez, E., Guillén-Cervantes, A., Santos-Cruz, J., Mayén-Hernández, S. A., Zelaya-Angel, O., Olvera M. de la L., Contreras Puente G, deMoure-Flores, F., Synthesis of paramelaconite nanoparticles by laser ablation. Journal of Laser Applications, ​30​ (2018), 012012.

doi:10.2351/1.4986981

J.F. Pierson, A. Thobor-Keck, A. Billard, Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering, Applied Surface Science, ​210​ (2003) 359-367.

https://doi.org/10.1016/S0169-4332(03)00108-9.

Murali, D.S., Aryasomayajula, S. Thermal conversion of Cu4O3 into CuO and Cu2O and the electrical properties of magnetron sputtered Cu4O3 thin films. Appl. Phys. A ​124

(2018) 279.

https://doi.org/10.1007/s00339-018-1666-6

Li, F., Chang, Q., Li, N., Xue, C., Liu, H., Yang, J., Shengliang H., Wang, H., Carbon dots-stabilized Cu4O3 for a multi-responsive nanozyme with exceptionally high activity.

Chemical Engineering Journal, ​394​ (2020) 125045.

doi:10.1016/j.cej.2020.125045

Radjehi, L., Aissani, L., Djelloul, A., Lamri, S., Nomenyo, K., Achache, S., Lerondel G, Sanchette, F., Effect of vacuum annealing on the structural and optical properties of

sputtered Cu4O3 thin films, Surface Engineering, ​35 ​ (2020) 1–7.

doi:10.1080/02670844.2020.1753397

Yahya Alajlani, Frank Placido, Anders Barlow, Hin On Chu, Shigeng Song, Saeed Ur Rahman, Robert De Bold, Des Gibson, Characterisation of Cu2O, Cu4O3, and CuO mixed phase thin films produced by microwave-activated reactive sputtering, Vacuum, ​144 (2017) 217-228.

https://doi.org/10.1016/j.vacuum.2017.08.005.

Qing Yang, Zhiang Guo, Xiaohong Zhou, Juntao Zou, Shuhua Liang, Ultrathin CuO nanowires grown by thermal oxidation of copper powders in air, Materials Letters, ​153

(2015) 128-131.

https://doi.org/10.1016/j.matlet.2015.04.045​.

M.A. Dar, Q. Ahsanulhaq, Y.S. Kim, J.M. Sohn, W.B. Kim, H.S. Shin, Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method;

structural properties and growth mechanism, Applied Surface Science, ​255 (2009) 6279-6284.

https://doi.org/10.1016/j.apsusc.2009.02.002

Adilov, S.R., Afanaciev, V.P., Kashkul, I.N. et al. Studying the composition and structure of films obtained by thermal oxidation of copper. Glass Phys Chem ​43 ​(2017) 272–275.

https://doi.org/10.1134/S1087659617030026

Patwary, M. A. M., Ho, C. Y., Saito, K., Guo, Q., Yu, K. M., Walukiewicz, W., Tanaka, T. (2020). Effect of oxygen flow rate on properties of Cu4O3 thin films fabricated by radio frequency magnetron sputtering. Journal of Applied Physics, ​127 (2020) 085302.

doi:10.1063/1.5144205

Deng, Y., Handoko, A. D., Du, Y., Xi, S., & Yeo, B. S., In Situ Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction:

Identification of CuIII Oxides as Catalytically Active Species. ACS Catalysis, ​6 (2016) 2473–2481.

doi:10.1021/acscatal.6b00205

L. Debbichi, M. C. Marco de Lucas, J. F. Pierson, and P. Krüger, Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared

Spectroscopy, The Journal of Physical Chemistry C ​116 ​(2012)10232-10237.

DOI: 10.1021/jp303096m

Downloads

Published

2021-05-01

How to Cite

[1]
M. A. Cruz Almazán, “Cu 4O3 thin films deposited by non-reactive rf-magnetron sputtering from a copper oxide target”, Rev. Mex. Fís., vol. 67, no. 3 May-Jun, pp. 495–499, May 2021.