Cu 4O3 thin films deposited by non-reactive rf-magnetron sputtering from a copper oxide target
DOI:
https://doi.org/10.31349/RevMexFis.67.495Keywords:
paramelaconite, Cu4O3, non reactive sputtering, thermal oxidationAbstract
Copper oxide thin films deposited by sputtering are frequently formed by using metal copper targets in reactive atmospheres. In this report, paramelaconite (Cu4O3) thin films were deposited by non-reactive rf magnetron sputtering. The target used for sputtering was a copper oxide disk fabricated by oxidation of metal copper at 1000 °C for 24 h in airatmosphere. X-ray diffraction (XRD) results showed that the copper oxide target was mainly composed of cupric oxide (CuO) and cuprous oxide (Cu2O) crystals. Raman analyses suggested that the surface of the copper oxide disk is composed by a (CuO) layer. XRD measurements performed to the copper oxide thin films deposited by non-reactive rf magnetron sputtering showed that the film is composed of (Cu4O3) crystals. However,
Raman measurements indicated that the Cu4O3 thin films are also composed by amorphous CuO and Cu2O.
References
Dolai, R. Dey, S. Das, S. Hussain, R. Bhar, A.K. Pal, Cupric oxide (CuO) thin films prepared by reactive d.c. magnetron sputtering technique for photovoltaic application,
Journal of Alloys and Compounds,724 (2017) 456-464.
https://doi.org/10.1016/j.jallcom.2017.07.061.
A.O Musa, T Akomolafe, M.J Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties, Solar Energy
Materials and Solar Cells, 51 (1998) 305-316.
https://doi.org/10.1016/S0927-0248(97)00233-X.
Zhelong Jiang, Shiliang Tian, Shuqi Lai, Rebecca D. McAuliffe, Steven P. Rogers, Moonsub Shim, and Daniel P. Shoemaker, Capturing Phase Evolution during Solvothermal
Synthesis of Metastable Cu4O3, Chemistry of Materials 28 (2016) 3080-3089.
DOI: 10.1021/acs.chemmater.6b00421
Smith, D. et al., Penn State University, University Park, Pennsylvania, USA., ICDD Grant-in-Aid, (1979).
Kim, H.-S., Kumar, M. D., Park, W.-H., Patel, M., & Kim, J. Cu 4 O 3 -based all metal oxides for transparent photodetectors. Sensors and Actuators A: Physical, 253 (2017) 35–40.
doi:10.1016/j.sna.2016.11.020
Martić, N., Reller, C., Macauley, C., Löffler, M., Schmid, B., Reinisch, D., Volkova E., Maltenberger A., Rucki A., Mayrhofer K., Schmid, G.,Paramelaconite-Enriched
Copper-Based Material as an Efficient and Robust Catalyst for Electrochemical Carbon Dioxide Reduction. Advanced Energy Materials, 9 (2019) 1901228.
doi:10.1002/aenm.201901228
Thanuja, J., Udayabhanu, Nagaraju, G., Raja Naika H, Biosynthesis of Cu4O3 nanoparticles using Razma seeds: application to antibacterial and cytotoxicity activities. SN
Appl. Sci. 1 (2019) 1646.
https://doi.org/10.1007/s42452-019-1556-3
Zhelong Jiang, Shiliang Tian, Shuqi Lai, Rebecca D. McAuliffe, Steven P. Rogers, Moonsub Shim, and Daniel P. Shoemaker, Capturing Phase Evolution during Solvothermal
Synthesis of Metastable Cu4O3, Chemistry of Materials, 28 (2016) 3080-3089.
DOI: 10.1021/acs.chemmater.6b00421
Arreguín-Campos, M., Campos-Gonzalez, E., Guillén-Cervantes, A., Santos-Cruz, J., Mayén-Hernández, S. A., Zelaya-Angel, O., Olvera M. de la L., Contreras Puente G, deMoure-Flores, F., Synthesis of paramelaconite nanoparticles by laser ablation. Journal of Laser Applications, 30 (2018), 012012.
doi:10.2351/1.4986981
J.F. Pierson, A. Thobor-Keck, A. Billard, Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering, Applied Surface Science, 210 (2003) 359-367.
https://doi.org/10.1016/S0169-4332(03)00108-9.
Murali, D.S., Aryasomayajula, S. Thermal conversion of Cu4O3 into CuO and Cu2O and the electrical properties of magnetron sputtered Cu4O3 thin films. Appl. Phys. A 124
(2018) 279.
https://doi.org/10.1007/s00339-018-1666-6
Li, F., Chang, Q., Li, N., Xue, C., Liu, H., Yang, J., Shengliang H., Wang, H., Carbon dots-stabilized Cu4O3 for a multi-responsive nanozyme with exceptionally high activity.
Chemical Engineering Journal, 394 (2020) 125045.
doi:10.1016/j.cej.2020.125045
Radjehi, L., Aissani, L., Djelloul, A., Lamri, S., Nomenyo, K., Achache, S., Lerondel G, Sanchette, F., Effect of vacuum annealing on the structural and optical properties of
sputtered Cu4O3 thin films, Surface Engineering, 35 (2020) 1–7.
doi:10.1080/02670844.2020.1753397
Yahya Alajlani, Frank Placido, Anders Barlow, Hin On Chu, Shigeng Song, Saeed Ur Rahman, Robert De Bold, Des Gibson, Characterisation of Cu2O, Cu4O3, and CuO mixed phase thin films produced by microwave-activated reactive sputtering, Vacuum, 144 (2017) 217-228.
https://doi.org/10.1016/j.vacuum.2017.08.005.
Qing Yang, Zhiang Guo, Xiaohong Zhou, Juntao Zou, Shuhua Liang, Ultrathin CuO nanowires grown by thermal oxidation of copper powders in air, Materials Letters, 153
(2015) 128-131.
https://doi.org/10.1016/j.matlet.2015.04.045.
M.A. Dar, Q. Ahsanulhaq, Y.S. Kim, J.M. Sohn, W.B. Kim, H.S. Shin, Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method;
structural properties and growth mechanism, Applied Surface Science, 255 (2009) 6279-6284.
https://doi.org/10.1016/j.apsusc.2009.02.002
Adilov, S.R., Afanaciev, V.P., Kashkul, I.N. et al. Studying the composition and structure of films obtained by thermal oxidation of copper. Glass Phys Chem 43 (2017) 272–275.
https://doi.org/10.1134/S1087659617030026
Patwary, M. A. M., Ho, C. Y., Saito, K., Guo, Q., Yu, K. M., Walukiewicz, W., Tanaka, T. (2020). Effect of oxygen flow rate on properties of Cu4O3 thin films fabricated by radio frequency magnetron sputtering. Journal of Applied Physics, 127 (2020) 085302.
doi:10.1063/1.5144205
Deng, Y., Handoko, A. D., Du, Y., Xi, S., & Yeo, B. S., In Situ Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction:
Identification of CuIII Oxides as Catalytically Active Species. ACS Catalysis, 6 (2016) 2473–2481.
doi:10.1021/acscatal.6b00205
L. Debbichi, M. C. Marco de Lucas, J. F. Pierson, and P. Krüger, Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared
Spectroscopy, The Journal of Physical Chemistry C 116 (2012)10232-10237.
DOI: 10.1021/jp303096m
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Miguel Ángel Cruz Almazán, Enrique Vigueras Santiago, Roberto López, Susana Hernández López, Victor Hugo Castrejón Sánchez, Alejandro Esparza, Cecilia Encarnación Gómez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.