Approximate solutions of the Schrödinger equation with Hulthén-Hellmann Potentials for a Quarkonium system
DOI:
https://doi.org/10.31349/RevMexFis.67.482Keywords:
Schrödinger equation, Nikiforov-Uvarov method, Hulthén potential, Hellmann potential, Heavy mesonsAbstract
Hulthén plus Hellmann potentials are adopted as the quark-antiquark interaction potential for studying the mass spectra of heavy mesons. We solved the radial Schrödinger equation analytically using the Nikiforov-Uvarov method. The energy eigenvalues and corresponding wave function in terms of Laguerre polynomials were obtained. The present results are applied for calculating the mass of heavy mesons such as charmonium and bottomonium. Four special cases were considered when some of the potential parameters were set to zero, resulting into Hellmann potential, Yukawa potential, Coulomb potential, and Hulthén potential, respectively. The present potential provides satisfying results in comparison with experimental data and the work of other researchers.References
H.Mutuk, Mass Spectra and Decay constants of Heavy-light Mesons:A case study of QCD sum Rules and Quark model, Adv. in High Energy Phys.,20(18)8095653 (2018)
A. Mocsy , Potential models for quarkonia. The Euro. Phys. J. 61, (2009)705-710.
A. K. Rai, D. P. Rathaud, The mass spectra and decay properties of dimesonic states, using the Hellmann potential, Eur. Phys. J C 75 (2015) (9). doi:10.1140/epjc/s10052-015-3695-z
A. N. Ikot, U. S. Okorie, G. Osobonye, P.O. Amadi, C. O. Edet, M. J. Sithole, G. J. Rampho, R. Sever, Superstatistics of Schrodinger equation with pseudo-harmonic potential in external magnetic and Aharanov-Bohm fields, Heliyon 6 (2020) e03738, doi: 10.1016/j.heliyon.2020.e03738
S.M.Ikhdair, Relativistic bound states of spinless particle by the Cornell potential model in in external fields.Advances in High Energy Physics (2013)491648
A. Mira-Cristiana ,Yukawa:The man and the potential. Didactica Mathematica, 33, (2015)1-9.
E. Omuge, O.E.Osafile,M.C. Onyeajh, Mass spectrum of mesons via WKB Approximation method.Advance in High Energy. Phys.10(2020) 1143-1155.
H. Mansour , A. Gamal ,Bound state of Heavy Quarks using a General polynomial potential. Advan. in High Ener. Phys.65,(2018)1234-1324.
L. Hulthén, Uber die eigenlosunger der schrodinger - gleichung des deuterons, Ark. Mat. Astron. Fys. A 28(1942) 5
T. Xu, Z.Q.Cao ,Y.C. Ou, Q.S.Shen , G.L.Zhu, Critical radius and dipole polarizability for a confined system. Chine. Phys. 15,(2006) 1172-1176.
B. Durand , L. Durand, Duality for heavy-quark systems. Phys. Rev. D, 23,(1981)1092-1102.
C.S.Jia, J.Y.Wang , S.He, L.T.Sun, Shape invariance and the supersymmetry WKB approximation for a diatomic molecule potential. J. Phys. A, 33,(2000)6993-6998.
H. Hellmann, A New Approximation Method in the Problem of Many Electrons, J Chem Phys 3(1935) 61, https://doi.org/10.1063/1.1749559
B.J. Falaye ,K.J. Oyewumi, T.T.Ibrahim, M.A. Punyasena, C.A.Onate, Bound solutions of the Hellmann potential. Canad. J Phys. 91,(2013) 98-104.
C. A. Onate, O. Ebomwonyi, K. O. Dopamu, J. O. Okoro, M. O. Oluwayemi, Eigen solutions of the D-dimensional Schrӧdinger equation with inverse trigonometry scarf potential and Coulomb potential, Chin. J. Phys, (2018), doi:10.1016/j.cjph.2018.03.013
S. M. Ikhdair, R. Sever, Bound Energy for the Exponential-Cosine-Screened Coulomb Potential. J. Math. Chem., 41 (2006) 4, 329–341, doi:10.1007/s10910-006-9080-2
S. M. Ikhdair, An improved approximation scheme for the centrifugal term and the Hulthén potential. The Eur. Phys. J. A, 39 (2009) 3, 307–314. doi:10.1140/epja/i2008-10715-2
R.Rani,S.B.Bhardwaj, and F.Chand,Mass spectra of heavy and light mesons using Asymptotic Iteration Method, Communication in Theoretical Physics 70(2)(2018) 179
J. E.Ntibi, E.P.Inyang, E.P.,Inyang, and E.S.William, Relativistic Treatment of D-Dimensional Klien-Gordon equation with Yukawa potential . International Journal of Innovative Science, Engineering &Technology 11(7) (2020) 2348-7968.
M. Hamzavi, K. E. Thylwe, A. A. Rajabi, Approximate Bound States Solution of the Hellmann Potential, Commun Theor Phys, 60 (2013) 1–8. doi:10.1088/0253-6102/60/1/01
E.P. Inyang , E.P. Inyang, J.E.Ntibi, E.E.Ibekwe,E.S.William, Approximate solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method. Indian Journal of Physics 20 (2020) 00097R2
A. Vega and J.Flores, Heavy quarkonium properties from Cornell potential using variational method and supersymmetric quantum mechanics,Pramana J.Phys. 87(5) (2016)
M.Abu-Shady , T.A.Abdel-Karim, Y. Ezz-Alarab, Masses and thermodynamic properties of heavy mesons in the non-relativistic quark model using the Nikiforov-Uvarov method. Journal of the Egyptian. Mathematical Society. 27(1), (2019)145-155.
H. Ciftci ,H.F. Kisoglu, Non-relativistic Arbitary -states of Quarkonium through Asymptotic interation method. Advances in High Energy Phys. 45(2018)49705
M. Abu-Shady,Analytic solution of Dirac Equation for extended Cornell Potential using the Nikiforov-Uvarov method. Bos. J. mod. Phys. 55(1),(2015) 789-799.
A.Al-Jamel ,H.Widyan , Heavy quarkonium mass spectra in a Coulomb field plus Quadratic potential using Nikiforov-Uvarov method. Applied Physics Research 4(2012).
E.E.Ibekwe , T.N.Alalibo,S.O.Uduakobong , A.N.Ikot , N.Y.Abdullah, Bound state solution of radial Schrödinger equation for the quark-antiquark interaction potential. Iran Journal of ScienceTechnology 20(2020)00913.
A. Al-Oun, A. Al-Jamel, H. Widyan,Various properties of Heavy Quakonium from Flavor-independent Coulomb plus Quadratic potential. Jord. J. Phys., 40, (2015)453-464.
R.Kumar, F. Chand, Asymptotic study to the N-dimensional Radial Schrodinder Equation for the quark-antiquark system. Communication in Theoretical Physics, 59, (2013)456-467.
R. Kumar ,F. Chand, Solutions to the N-dimensional radial Schrodinger equation for the potential . Pramana. J. of Phys.,34,(2014)1-10.
C. A. Onate, J. O. Ojonubah, A. Adeoti, E. J. Eweh, M. Ugboja, Approximate Eigen Solutions of D.K.P. and Klein-Gordon Equations with Hellmann Potential, Afr. Rev. Phys, 9:0062 497 (2014), 1 – 8.
E.S. William , E.P.Inyang, E.A. Thompson, Arbitrary-solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model. Revista Mexicana de Fisica.66(6)(2020) 730-741.
C.O.Edet, U.S.Okorie,A.T.Ngiangia, and A.N.Ikot, Bound state solutions of the Schrödinger equation for the modified Kratzer plus screened Coulomb potential. Indian Journal of Physics 94,(2020)423- 433.
M. Abu-Shady, N-dimensional Schrödinger equation at finite temperature using the Nikiforov-Uvarov method. J. Egyp. Mathe. Soci. 23,(2016)1-4.
M. Abu-Shady , T.A.Abdel-Karim, E.M.Khokha, Exact solution of the N-dimensional Radial Schrödinger Equation via Laplace Transformation method with the Generalized Cornell potential. J. of Quantum Phys. 45, (2018)567-587.
M. Tanabashi , C.D.Carone,T.G.Trippe , C.G. Wohl Particle Data Group. Phys. Rev. D, 98, (2018)546-548.
R.Olive,D.E. Groom, T.G.Trippe Particle Data Group. Chin. Phys. C,38(9),(2014) 54-60.
R.M.Barnett , C.D.Carone, D.E.Groom,T.G. Trippe, C.G.Wohl, Particle Data Group. Phys. Rev. D, 92,(2012) 654-656.
A. F. Nikiforov, V. B. Uvarov, Special Functions of Mathematical Physics, (Birkhauser, Bassel, 1988)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 ETIDO P INYANG, Ita O Akpan, Ephraim P Inyang, Eddy S William
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.