Water effect in the synthesis of nanostructured thin films of HfO2 deposited by the ultrasonic spray pyrolysis technique


  • Roberto Vazquez-Arreguin Escuela Superior de Computo del Instituto Politécnico Nacional
  • Alejandro Gonzalez Cisneros Escuela Superior de Computo del Instituto Politécnico Nacional
  • Antonio Gustavo Juárez-Gracia CICATA-IPN
  • Luis Mariscal-Becerra Facultad de Ciencias, Universidad Nacional Autónoma de México
  • Miguel García-Rocha Cinvestav
  • Angel Adalberto Duran-Ledezma Escuela Superior de Computo del Instituto Politécnico Nacional




Nanostructured thin films, USP process, metal-organic source, crystal structures, high-K dielectrics.


HfO2 thin films are proposed as high-k gate dielectric, especially for the fabrication of ultra-large-scale integration systems. The effect of adding deionized water during the synthesis of HfO2 thin films on its structural and dielectric properties is reported. The study of nanostructured HfO2 thin films deposited on crystalline silicon wafers is made by applying the ultrasonic spray pyrolysis (USP) technique. For the synthesis of hafnium oxide thin films, hafnium acetylacetonate was dissolved in dimethylformamide as a hafnium source material. Varying the substrate temperature from 400 and up to 550 °C in increments of 50 °C and adding deionized water during the process, favoring films with well-defined monoclinic well as polycrystalline structures. The thin films presented a nanostructured morphology and a rugosity with a minimum value of 0.45 nm. Refractive index values between 1.87 and 2.02 have been obtained with an average thickness of ~ 21 nm. The carbon and O-H binds decrease considerably, adding deionized water to the deposit. The electrical characterization revealed that the films deposited with deionized water have a high dielectric constant with a maximum value of 14.4, demonstrating that this addition during deposition allows thinner films with good dielectric properties.

Author Biographies

Roberto Vazquez-Arreguin, Escuela Superior de Computo del Instituto Politécnico Nacional

Departamento de Formación Básica. Docente

Alejandro Gonzalez Cisneros, Escuela Superior de Computo del Instituto Politécnico Nacional

Departamento de Formación Básica. Docente

Miguel García-Rocha, Cinvestav


Angel Adalberto Duran-Ledezma, Escuela Superior de Computo del Instituto Politécnico Nacional

Departamento de Formación Básica. Docente


Seok-Woo Nam et al, Influence of annealing condition on the properties of sputtered hafnium oxide, Journal of Non-Crystalline Solids 303 (2002) 139-143, https://doi.org/10.1016/S0022-3093(02)00976-6

J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors, Rep. Prog. Phys. 69 (2006) 327-396, https://doi.org/10.1088/0034-4885/69/2/R02.

M. Balog, M. Schieber, M. Michman and S. Patai, Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds, Thin Solid Films 41 (1977) 247-259, https://doi.org/10.1016/0040-6090(77)90312-1

M. Villanueva-Ibañez, C. Le Luyer, O. Marty, J. Mugnier, Annealing and doping effects on the structure of europium-doped HfO2 sol–gel material, Optical Materials 24 (2003) 51- 57, https://doi.org/10.1016/S0925-3467(03)00104-6.

Takanori Mori, Makoto Fujiwara, Rafael R. Manory, Ippei Shimizu, Takeo Tanaka, Shoji Miyake, HfO2 thin films prepared by ion beam assisted deposition, Surface and Coating Technology 169 (2003) 528-531, https://doi.org/10.1016/S0257-8972(03)00189-0.

M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, Structural and optical modification in hafnium oxide thin films related to the momentum parameter transferred by ion beam assistance, Thin Solid Films 354 (1999) 19-23, https://doi.org/10.1016/S0040-6090(99)00534-9.

H. Ibégazéne, S. Alpérine, C. Diot, Yttria-stabilized hafnia-zirconia thermal barrier coatings: The influence of hafnia addition on TBC structure and high-temperature behaviour, J. Mater. Sci. 30 (1995) 938-951, https://doi.org/10.1007/BF01178428.

J. Wang, H.P. Li, R. Stevens, Hafnia and hafnia-toughened ceramics, J. Mater. Sci. 27 (1992) 5397-5430, https://doi.org/10.1007/BF00541601.

V. Dave, P. K. Mishra, R. Chandra, Nanostructured Hafnium Oxide Thin films for Sensing Carbon Monoxide: An Experimental Investigation, Materials Today: Proceedings 5 (2018) 23286-23292, https://doi.org/10.1016/j.matpr.2018.11.062.

Guzmán Olguin J.C., Montes E., Guzmán Mendoza J., Baez Rodríguez A., Zamora Peredo L., García Hipólito M., Tunable white light emission from hafnium oxide films co‐doped with trivalent terbium and europium ions deposited by Pyrosol technique, Phys. Status Solidi A 214, No. 10, (2017) 1700269, https://doi.org/10.1002/pssa.201700269.

S.J. Wang, P.C. Lim, A.C.H. Huan, C. L. Liu, J. W. Chai, S. Y. Chow, J. S. Pan, Q. Li, and K. Ong, Reaction of SiO2 with hafnium oxide in low oxygen pressure, Applied Physics Letters 82 (2003) 2047, https://doi.org/10.1063/1.1565182.

M. J. Biercuk, D. J. Monsma, M. Marcus, J. S. Becker, and R. G. Gordon, Low-temperature atomic-layer-deposition lift-off method for microelectronic and nanoelectronic applications, Applied Physics Letters 83 (2003) 2405, https://doi.org/10.1063/1.1612904.

M. Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, P. M. Voyles, D. A. Muller, M. Bude, W. H. Lin, a. See, M. E. Loomans, S. K. Lahiri and Petri I. Räisänen, Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition, Journal of Applied Physics 93 (2003)1477, https://doi.org/10.1063/1.1534381.

Robert Chow, Steve Falabella, Gary E. Loomis, Frank Rainer, Christopher J. Stolz and Mark R. Kozlowski, Reactive evaporation of low-defect density hafnia, Applied Optics 32 (1993) 5567, https://doi.org/10.1364/AO.32.005567.

Patric S. Lysaght, Brendan Foran, Gennadi Bersuker, Peijun J. Chen, Robert W. Murto and Howard R. Huff, Physicochemical properties of HfO2 in response to rapid thermal anneal, Applied Physics Letters 82 (2003) 1266, https://doi.org/10.1063/1.1553998.

M. F. Al-Kuhaili, S. M. A. Durrani and E. E. Khawaja, Characterization of hafnium oxide thin films prepared by electron beam evaporation, Journal of Physics D: Applied Physics 37 (2004) 1254, https://doi.org/10.1088/0022-3727/37/8/015.

J. P. Lehan, Y. Mao, B. G. Bovard and H. A. Macleod, Optical and microstructural properties of hafnium dioxide thin films, Thin Solid Films 203 (1991) 227, https://doi.org/10.1016/0040-6090(91)90131-G.

M. Gilo and N. Croitoru, Study of HfO2 films prepared by ion- assisted deposition using a gridless end-hall ion source, Thin Solid Films 350 (1999) 203, https://doi.org/10.1016/S0040-6090(99)00226-6.

P. Baumeister and O. Arnon, Use of hafnium dioxide in multilayer dielectric reflectors for the near uv, Applied Optics 16 (1977) 439, https://doi.org/10.1364/AO.16.000439.

M. Villanueva-Ibañez, C. Le Luyer, C. Dujardin and J. Mugnier, Elaboration, strucutural and spectroscopic properties of rare earth-doped yttrium-hafnium sol-gel oxide powders for scintillation applications, Materials Science and Engineering B 105 (2003) 12, https://doi.org/10.1016/j.mseb.2003.08.006.

M. Langlet, J. C. Joubert, in: C.N.R. Rao (Ed.) Chemistry of Advanced Materials, Blackwell Science, Oxford, England, ISBN 0632033851 (1993) p. 55.

J. Aarik, A. Aidla, A. A. Kiisler, Influence of substrate temperature and atomic layer growth and properties of HfO2 thin films, Thin Solid Films 340 (1999) 110, https://doi.org/10.1016/S0040-6090(98)01356-X.

D. H. Triyoso, Rama I. Hegde, Bruce E. White, Jr. & Philip J. Tobin., Physical and electrical characteristics of atomic-layer-deposited hafnium dioxide formed using hafnium tetrachloride and tetrakis (ethylmethylaminohafnium), J. Appl. Phys. 97 (2005) 124107, https://doi.org/10.1063/1.1947389.

Kaupo Kukli, Mikko Ritala, Markku Leskelä, Timo Sajavaara, Comparision of hafnium oxide films grown by atomic layer deposition from iodide and chloride precursors, Thin Solid Films 416 (2002) 72, https://doi.org/10.1016/S0040-6090(02)00612-0.

Suparat Tongpeng, Kornwipha Makbun, Panadda Peanporm, Rattiyawan Sangkorn, Orapim Namsar, Pattanapong Janphuang, Soodkhet Pojprapai and Sukanda Jainsirisomboon, Fabrication characterization of hafnium oxide thin films, Materials Today: Proceedings 17 (2019) 1555, https://doi.org/10.1016/j.matpr.2019.06.181.

Jaan Aarik, Aleks Aidla, Hugo Mändar, Väino Sammelselg and Teet Uustare, Texture development in nanocrystalline hafnium dioxide thin films grown by atomic layer deposition, Journal of Crystal Growth 220 (2000) 105-113, https://doi.org/10.1016/S0022-0248(00)00831-9.

Moonju Cho, Jaehoo Park, Hong Bae Park, and Cheol Seong Hwang, Chemical interaction between atomic-layer-deposited HfO2 thin films and the Si substrate, Appl. Phys. Lett. 81 (2002) 334, https://doi.org/10.1063/1.1492320.

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, Vacancy and interstitial defects in hafnia, Phys. Rev. B 65 (2002) 174117, https://doi.org/10.1103/PhysRevB.65.174117.

J. J. Yu, Q. Fang, J. –Y. Zhang, Z. M. Wang, I. W. Boyd, Hafnium oxide layers derived by photo-assited sol-gel processing, Applied Surface Science 208-209 (2003) 676, https://doi.org/10.1016/S0169-4332(02)01424-1.

J. F. Damlencourt, O. Renault, D. Samor, Electrical and physico-chemical characterization of HfO2/SiO2 gate oxide stacks prepared by atomic layer deposition, Solid-State Electronics 47 (2003) 1613, https://doi.org/10.1016/S0038-1101(03)00170-9.

H. Guo, W. Zhang, L. Lou, A. Brioude & J. Mugnier, Structure and optical properties of rare earth doped Y2O3 waveguide films derived by sol-gel process, Thin Solid Films 458 (2004) 274, https://doi.org/10.1016/j.tsf.2003.12.059.

Anand Deshpande, Ronald Inman, Gregory Jursich and Christos G. Takoudis, Annealing behavior of atomic layer deposited hafnium oxide on silicon: Changes at the interface, J. Appl. Phys. 99 (2006) 094102, https://doi.org/10.1063/1.2191434.

Xuefeng Wang & Lester Andrews, Infrared spectrum and structure of the Hf(OH)4 molecule, Inorg. Chem. 44 (2005) 7189, https://doi.org/10.1021/ic050614a.

Martin M. Frank, Safak Sayan, Sabine Dörman, Thomas J. Emge, Hafnium oxide gate dielectrics grown from an alkoxide precursor: structure and defects, Materials Science and Engineering: B 109 (2004) 6-10, https://doi.org/10.1016/j.mseb.2003.10.020.

J. S. Kim, H. A. Marzouk, P. J. Reucroft, J. D. Robertson, C. E. Hamrín, Fabrication of aluminum oxide thin films by a low‐pressure metalorganic chemical vapor deposition technique, Appl. Phys. Lett. 62(7) (1993) 681, https://doi.org/10.1063/1.108838.

D. A. Neumayer, E. Cartier, Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition, Journal of Applied Physics 90(4) (2001) 1801, https://doi.org/10.1063/1.1382851.

M. Modreanu, J. Sancho-Parramon, D. O´Cornell, J. Justice, O. Durand and B. Servet, Solid phase crystallisation of HfO2 thin films. Materials Science and Engineering: B 118 (2005) 127, https://doi.org/10.1016/j.mseb.2004.12.068.

Kaupo Kukli, Mikko Ritala, Markku Leskelä, Timo Sajavaara, Atomic Layer Deposition of Hafnium Dioxide Films from 1-Methoxy-2-methyl-2-propanolate Complex of Hafnium, Chem. Mater 15 (2003) 1722, https://doi.org/10.1021/cm021328p.

Jong-Chan Park, Yung-Sup Yoon, and Seong-Jun Kang, Structural and Optical Properties of HfO2 Films on Sapphire Annealed in O2 Ambient, Journal of the Korean Ceramic Society 53(5) (2016) 563, https://doi.org/10.4191/kcers.2016.53.5.563.

M. J. Esplendiu, E. M. Patrito & V. A. Macagno, Ellipsometric investigation of anodic hafnium oxide films, Electrochimica Acta 42(9) (1997) 1315, https://doi.org/10.1016/S0013-4686(96)00256-3.

Wenting Liu, Zhengtang Liu, Feng Yan, Tingting Tan and Hao Tian, Influence of O2/Ar flow ratio on the structure and optical properties of sputtered hafnium dioxide thin films, Surface and Coatings Technology 205 (2010) 2120, https://doi.org/10.1016/j.surfcoat.2010.08.116.

Sadaf Bashir Khan, Zhengjun Zhang and Shern Long Lee, Annealing influence on optical performance of HfO2 thin films, Journal of Alloys and Compounds 816 (2020) 152552, https://doi.org/10.1016/j.jallcom.2019.152552.

Kenji Takahashi, Makoto Nakayama, Shintaro Yokohama, Preparation of hafnium oxide films from oxygen-free Hf[N(C2H5)2]4 precursor and their properties,Applied Surface Science 216 (2003) 296, https://doi.org/10.1016/S0169-4332(03)00435-5.

Dina H. Triyoso, Impact of titanium addition on film characteristics of HfO2 gate dielectrics deposited by atomic layer deposition, Journal of Applied Physics 98 (2005) 054104, https://doi.org/10.1063/1.2030407.

C. M. Lopez & E. A. Irene, A study of HfO2 film interfaces with Si and SiO2, Journal of Applied Physics 99 (2006) 024101, https://doi.org/10.1063/1.2161411.

Jaan Arik, Jonas Sundqvist, Aleks Aidla, Jun Lu, Timo Sajavaara, Hafnium tetraiodide and oxygen as precursors for atomic layer deposition of hafnium oxide thin films, Thin Solid Films 418 (2002) 69, https://doi.org/10.1016/S0040-6090(02)00765-4.

Larysa Khomenkova, Bhabani S Sahu, Abdelilah Slaoui and Fabrice Gourbilleau, Hf-based high-k materials for Si nanocrystal floating gate memories, Nanoscale Research Letters 6 (2011) 172, https://doi.org/10.1186/1556-276X-6-172.

A. Callegari, E. Cartier, M. Gribelyuk, H. F. Okorn-Schmidt & T.Zabel, Physical and electrical characterization of Hafnium oxide and Hafnium silicate sputtered films, Journal of Applied Physics 90 (2001) 6466, https://aip.scitation.org/doi/10.1063/1.1417991.




How to Cite

R. Vazquez-Arreguin, A. G. Cisneros, A. G. Juárez-Gracia, L. Mariscal-Becerra, M. García-Rocha, and A. A. Duran-Ledezma, “Water effect in the synthesis of nanostructured thin films of HfO2 deposited by the ultrasonic spray pyrolysis technique”, Rev. Mex. Fís., vol. 67, no. 5 Sep-Oct, pp. 051002 1–, Sep. 2021.