Localized overheating on aluminum metafilms mediated by surface plasmons

Authors

  • David Eduardo Martínez Lara Instituto de Investigaciones en Materiales - UNAM
  • Ricardo González Campuzano Instituto de Investigaciones en Materiales - UNAM
  • José Luis Benítez Benítez Instituto de Ciencias Aplicadas y Tecnología - UNAM
  • Doroteo Mendoza López Instituto de Investigaciones en Materiales - UNAM

DOI:

https://doi.org/10.31349/RevMexFis.67.051001

Keywords:

aluminum, surface plasmons, hot carriers

Abstract

We studied the increase in temperature of systems formed by thin aluminum films deposited on texturized substrates which we denominated aluminum metafilms. By varying the geometric parameters of the metafilms, surface plasmons in the wavelength range of ~420-770 nm were excited. Temperature measurements as a function of the intensity of incident radiation in the interval from 0-to 4X10^18 (photons/s cm^2) using wavelengths of 445, 532 and 650 nm, showed temperature increases up to ~200 K, these attributed to metafilm morphology and hot electrons result of the non-radiative decay of the surface plasmons. Also increases up to 2.3X10^(-4) Ohm cm  in electrical resistivity were recorded when the metafilms were radiated for times of ~1 s; when the exposure times were greater than ~4 s, irreversibly changes in the morphology of the samples were observed.

References

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988), pp. 4-7.

Mark L. Brongersma and Vladimir M. Shalaev, The case for plasmonics, Appl. Phys. 328 (210) 440, https://doi.org/10.1126/science.1186905

E. Ozbay, Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions, Science. 311 (206) 189, https://doi.org/10.1126/science.1114849

Ali Ramazani, Farzaneh Shayeganfar, Jaafar Jalilian and Nicholas X. Fang, Exciton-plasmon polariton coupling and hot carrier generation in two-dimensional SiB semiconductors: a first-principles study. Nanophotonics. 9 (2020) 337, https://doi.org/10.1038/NNANO.2014.311

Mark L. Brongersma, Nahomi J. Halas and Peter Nordlander, Plasmon-induced hot carriers science and technology, Nat. Nanotechnology. 10 (2015) 25, https://doi.org/10.1038/nnano.2014.311

Guillaume Baffou, Frank Cichos and Romain Quidant, Applications and challenges of thermoplasmonics, Nat. Mater. 19 (2020) 946, https://doi.org/10.1038/s41563-020-0740-6

Xianguang Meng, Lequan Liu, Shuxin Ouyang, Hua Xu, Defa Wang, Naiqin Zhao and Jinhua Ye, Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis Adv. Mater. 28 (2016) 6781, https://doi.org/10.1002/adma.201600305

Guillaume Baffou and Romain Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7 (2012) 1, https://doi.org/10.1002/lpor.201200003

Guillaume Baffou, Julien Polleux, Herve Rigneault and Serge Monneret, Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination, J. Phys. Chem. C, 118 (2014) 4890, https://doi.org/10.1021/jp411519k

H. U. Yang, Jeffrey D'Archangel, Michael L. Sundheimer, Eric Tucker, Glenn D. Boreman, and Markus B. Raschke, Optical dielectric function of silver. Phys. Rev. B, 91 (2015) 23, https://doi.org/10.1103/PhysRevB.91.235137

M. R. Beversluis, A. Bouhelier, and L. Novotny, Continuum generation from single gold nanostructures through near-field mediated intraband transitions, Phys. Rev. B, 68 (2003) 115433, https://doi.org/10.1103/PhysRevB.68.115433

Davy Gérard and Stephen K Gray. Aluminium plasmonics. Appl. Phys. 48 (2015) 18, https://doi.org/10.1088/0022-3727/48/18/184001

Mark W. Knight, Nicholas S. King, Lifei Liu, Henry O. Everitt, Peter Nordlander, and Naomi J. Halas, Aluminum for Plasmonics, ACS Nano. 8 (2014) 834, https://doi.org/10.1021/nn405495q

M. Schwind, B. Kasemo, and I. Zorić, Localized and Propagating Plasmons in Metal Films with Nanoholes, Nano Lett. 13 (2013) 1743, https://doi.org/10.1021/nl400328x

Mehmet Mutlu, Juhyung Kang, Søren Raza, David T. Schoen, Xiaolin Zheng, Pieter G. Kik, and Mark L. Brongersma, Thermoplasmonic Ignition of Metal Nanoparticles, Nano Lett. 18 (2018) 1699, https://doi.org/10.1021/acs.nanolett.7b04739

R. González-Campuzano, M. E. Mata-Zamora, S. López-Romero, and D. Mendoza, Excitation of plasmonic resonances within UV-Vis wavelength range using low-purity aluminum nanoconcave arrays. Appl. Phys. Lett. 113 (2018) 221604, https://doi.org/10.1063/1.5059556

R. González-Campuzano, D. E. Martínez-Lara, and D. Mendoza, Lead plasmonics on texturized substrates: Pb metafilms, Appl. Phys. Lett. 117 (2020) 032105, https://doi.org/10.1063/5.0010311

R. González-Campuzano and D. Mendoza, Excitation of plasmons in self-ordered arrays of aluminum and silver nanocanves within UV-IR spectral range. J. Phys.: Conf. Sers. 1221 (2016) 012001, https://doi.org/10.1088/1742-6596/1221/1/012001

Bob Y. Zheng, Hangqi Zhao, Alejandro Manjavacas, Michael McClain, Peter Nordlander and Naomi J. Halas, Distinguishing between plasmon-induced and photoexcited carriers in a device geometry, Nat. Commun. 6 (2015) 1, https://doi.org/10.1038/ncomms8797

Matthew T. Sheldon, Jorik van de Groep, Ana M. Brown, Albert Polman and Harry A. Atwater, Plasmoelectric potentials in metal nanostructures, Nanophotonics. 346 (2014) 828, https://doi.org/10.1126/science.1258405

Qiushi Guo, Renwen Yu, Cheng Li, Shaofan Yuan, Bingchen Deng, F. Javier García de Abajo and Fengnian Xia. Christy, Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nature materials 17 (2018) 986, https://doi.org/10.1038/s41563-018-0157-7

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9 (2012) 671 https://doi.org/10.1038/nmeth.2089

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hj Corvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, and G. Ctistis, Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays, Appl. Phys. Lett, 19 (2011) 23867, https://10.1063/1.4742931

Edward D. Palik, Hadbook of Optical Constants of Solids, Vol 2., Academic, (New York, 1985), pp. 395-401

A.I. Golovashkin and G.P. Motulevich, Optical Properties of Lead in the Visible and Infrared Spectral Ranges, Sov. Phys. JETP, 26 (1968) 5

H. Ehrenreich, H. R. Philipp, and B. Segall, Optical Properties of Aluminum, Phys. Rev. 132 (1963) 1918, https://doi.org/10.1103/PhysRev.132.1918

A. J. Hughes, D. Jones, and A. H. Lettington, Calculation of the optical properties of aluminium, J. Phys. C: Solid State Phys. 2 (1968) 102, https://doi.org/10.1088/0022-3719/2/1/313

Leyre Gomez, Victor Sebastian, Manuel Arruebo, Jesus Santamaria and Stephen B. Cronin, Plasmon-enhanced photocatalytic water purification. Phys. Chem. Chem. Phys.16 (2014) 15111 https://doi.org/10.1039/C4CP00229F

https://www.youtube.com/watch?v=bv3aGLV_jmA

C. Kittel, Introduction to Solid State Physics. University of California, Berkeley (John Wiley and Sons, Inc, 2005), pp. 265-267.

Downloads

Published

2021-09-01

How to Cite

[1]
D. E. Martínez Lara, R. González Campuzano, J. L. Benítez Benítez, and D. Mendoza López, “Localized overheating on aluminum metafilms mediated by surface plasmons”, Rev. Mex. Fís., vol. 67, no. 5 Sep-Oct, pp. 051001 1–, Sep. 2021.