Experimental study of the modified Paschen's law: glow discharge of Ethanol (CH3CH2OH), Methanol (CH3OH) and its mixture

Authors

  • J. C. Palomares Universidad Autonoma del Estado de Mexico
  • Pedro Guillermo Reyes Universidad Autónoma del Estado de México
  • A. Gómez Universidad Autonoma del Estado de Mexico
  • M. J. Rodríguez Universidad Autónoma del Estado de México
  • C. Torres Universidad Autónoma del Estado de Morelos
  • J. Vergara Universidad Autónoma del Estado de Morelos
  • H. Martínez Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.31349/RevMexFis.68.041502

Keywords:

Plasma; Paschen’s Law, breakdown; ethanol; methanol

Abstract

A low-pressure ethanol and methanol discharge produced by a DC electric field was studied experimentally, analyzing the disruptive voltage between parallel electrodes with a circular geometry as function of pressure and distance according with the Paschen’s law, this states that the breakdown voltage is a function of the product of gas pressure and distance following the relationship: VB = f(pd). Detailed knowledge of the minimum breakdown voltage required to initiate the ethanol–methanol discharge will be useful to providing important information for future experiments and applications. In this experiment, a cylindrical chamber was used to generate a glow discharge of the ethanol (CH3CH2OH), methanol (CH3OH), and 50% mixture, over a pressure range of 0.07–5.00 Torr. Optical emission spectroscopy was performed in the wavelength range of 200–900 nm. The Paschen curves, measured experimentally for ethanol and methanol are presented, taking in account the coefficient obtained using the variation in Paschen’s law as a function of the distance and radius of the electrodes (d/r).

References

A. Bogaerts, E. Neyis, R. Gijbels, and J. van der Mullen, Gas discharge plasmas and their applications, Spectrochim. Acta, 57 (2002) 609, https://doi.org/10.1016/S0584-8547(01)00406-2.

A. Bogaerts and R. Gijbels, Fundamental aspects and applications of glow discharge spectrometric techniques, Spectrochim. Acta, 53, (1998) 1, https://doi.org/10.1016/S0584-8547(97)00122-5.

Paschen F, Ueber die zum Funkenubergang in Luft, Wasserstoff und Kohlensaure bei verschiedenen Drucken erforderliche Potentialdifferenz, Ann. Phys., 273 (1889) 69, https://doi.org/10.1002/andp.18892730505.

V. A. Lisovskiy, S. D. Yakovin, and V. D. Yegorenkov, Low-pressure gas breakdown in uniform dc electric field, J. Phys. D: Appl. Phys., 33 (2000) 2722, https://iopscience.iop.org/article/10.1088/0022-3727/33/21/310.

C. Torres, P. G. Reyes, F. Castillo, and H. Martinez, Paschen law for argon glow discharge, J. Phys. Conf. Ser., 370, (2012) 012067, https://iopscience.iop.org/article/10.1088/1742-6596/370/1/012067/meta.

A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, and C. Poulain, Deviations from the Paschen’s law at short gap distances from 100 nm to 10 µm in air and nitrogen, Appl. Phys. Lett. 105 (2014) 123109, https://doi.org/10.1063/1.4895630.

S. I. Radwan, H. El-Khabeary, and A. G. Helal, Study of the secondary electron emission coefficient using disc and conical electrodes, Can. J. Phys. 94 (2016) 1275, https://doi.org/10.1139/cjp-2016-0334.

Y. P. Raizer, Gas Discharge Physics (Springer-Verlag, Berlin, Heidelberg, 1991).

Y. Fu, S. Yang, X. Zou, H. Luo, and X. Wang, Similarity of gas discharge in low-pressure argon gaps between two planeparallel electrodes, High Volt 1 (2016) 86, https://doi.org/10.1049/hve.2016.0017.

M. Prijil, G. Jobin, M. T. Sajith and P J Kurian, Experimental verification of modified Paschen’s law in DC glow discharge argon plasma, AIP Advances 9 (2019) 025215 https://doi.org/10.1063/1.5086246.

E. Husain and R. S. Nema, Analysis of Paschen Curves for air, N2 and SF6 Using the Townsend Breakdown Equation, IEEE Trans Electr Insul. EI-17 (1982) 350. https://doi.org/10.1109/TEI.1982.298506.

V. A. Lisovskiy, V. A. Koval, and V. D. Yegorenkov, Dc breakdown of low pressure gas in long tubes, Phys. Rev A, 375, (2011) 1986, https://doi.org/10.1016/j. physleta.2011.03.035.

Y. Fu, S. Yang, X. Zou, H. Luo, and X. Wang, Intersection of Paschen’s curves for argon, Phys. Plasmas, 23 (2016) 093509, https://doi.org/10.1063/1.4962673.

A. Venkattraman and A. A. Alexeenko, Scaling law for direct current field emission-driven microscale gas breakdown, Phys. Plasmas 19, (2012) 123515, https://doi.org/10.1063/1.4773399.

D. B. Go and D. A. Pohlman, A mathematical model of the modified Paschen’s curve for breakdown in microscale gaps, J. Appl. Phys. 107 (2010) 103303, https://doi.org/10.1063/1.3380855.

L. B. Loeb and J. M. Meek, Mechanism of Electric Spark (Stanford University Press, Stanford, CA, 1941).

https://www.nist.gov/

Downloads

Published

2022-06-23

How to Cite

[1]
J. C. Palomares, “Experimental study of the modified Paschen’s law: glow discharge of Ethanol (CH3CH2OH), Methanol (CH3OH) and its mixture”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 041502 1–, Jun. 2022.