A dynamical dark energy solution to Hubble tension in the light of the multimessenger era


  • Celia Escamilla Instituto de Ciencias Nucleares, UNAM




theories of gravity, astronomical surveys, dark energy, gravitational waves


We show that the gravitational waves measurements have raised the opportunity to measure $H_0$ with dark sirens to within 2$\sigma$, the accuracy required to resolve the \hubble tension. There are two principal reasons for our results: (1) upgrades to GW LIGO-Virgo transient catalogues GWTC-1 and GWTC-2 enhance their sensitive with only 10\% of contamination fraction, and (2) new dark sirens should help to constrain our dynamical EoS. In conjunction, sensitivity upgrades and a new dark energy model will facilitate an accurate inference of the \hubble constant $H_0$ to better with an $\pm 0.077$ error in comparison to the LIGO dark siren with $+14.0$/$-7.0$, which would further solidify the role of dark sirens in late dark energy for precision cosmology in the future.


P. A. R. Ade et al., Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys., 571 (2014) A16.

A. G. Riess et al., A space telescopeand wide field camera 3. The Astrophysical Journal, 730 (2011) 119.

N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641 (2020) A6.

A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ∆ Astrophys. J. 876 (2019) 85.

L. Verde, T. Treu, and A. G. Riess, Tensions between the Early and the Late Universe. (In Nature Astronomy 2019).

G. C. F. Chen et al., A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging. (2019).

Kenneth C. Wong et al., H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5:3σ tension between early and late-Universe probes. (2019).

S. H. Suyu et al., H0LiCOW I. H0 Lenses in COSMOGRAIL’s Wellspring: program overview. Mon. Not. Roy. Astron. Soc., 468 (2017) 2590,

T. M. C. Abbott et al., The Dark Energy Survey Data Release 1. Astrophys. J. Suppl., 239 (2018) 18

E. Macaulay et al., First Cosmological Results using Type Ia Supernovae from the Dark Energy Survey: Measurement of the Hubble Constant. Mon. Not. Roy. Astron. Soc., 486 (2019) 2184

M. J. Reid, D. W. Pesce, and A. G. Riess, An Improved Distance to NGC 4258 and its Implications for the Hubble Constant. (2019).

S. Borhanian, A. Dhani, A. Gupta, K. G. Arun, and B. S. Sathyaprakash, Dark Sirens to Resolve the 10 Hubble-Lemaˆıtre Tension. Astrophys. J. Lett., 905 (2020) L28.

M. Haslbauer, I. Banik, and P. Kroupa, The KBC void and Hubble tension contradict ∆CDM on a Gpc scale Milgromian dynamics as a possible solution. Mon. Not. Roy. Astron. Soc., 499 (2020) 2845.

W. D’Arcy Kenworthy, D. Scolnic, and A. Riess, The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant. Astrophys. J., 875 (2019) 145.

T. Shanks, L. Hogarth, and N. Metcalfe, Gaia Cepheid parallaxes and ’Local Hole’ relieve H0 tension. Mon. Not. Roy. Astron. Soc., 484 (2019) L64.

E. Di Valentino et al., Cosmology Intertwined II: The Hubble Constant Tension. 8 (2020)

P. Meszaros, D. B. Fox, C. Hanna, and K. Murase, Multi Messenger Astrophysics. Nature Rev. Phys. 1 (2019) 585.

J. M. Ezquiaga and M. Zumalacarregui, Dark Energy in light of Multi-Messenger Gravitational-Wave astronomy. Front. Astron. Space Sci., 5 (2018) 44

M. Corman, C. Escamilla-Rivera, and M. A. Hendry, Constraining extra dimensions on cosmological scales with LISA future gravitational wave siren data. 4 (2020).

B. P. Abbott et al., A gravitational-wave standard siren measurement of the Hubble constant. Nature, 551 (2017) 85.

B. P. Abbott et al., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119 (2017) 161101.

B. P. Abbott et al., GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X, 9 (2019) 031040.

Kenta Hotokezaka et al., A Hubble constant measurement from superluminal motion of the jet in GW170817. Nature Astron. (2019).

F. Niedermann and M. S. Sloth, New Early Dark Energy. 10 (2019) 25. M. Chevallier and D. Polarski, Accelerating universes with scaling dark matter. Int. J. Mod. Phys. D 10 (2001) 213.

Eric V. Linder. The Dynamics of Quintessence, The Quintessence of Dynamics. Gen. Rel. Grav., 40 (2008) 329.

E. M. Barboza J.r. and J.S. Alcaniz, A parametric model for dark energy. Physics Letters B, 666 (2008) 415.

W. Yang, S. Pan, E. Di Valentino, and E. N. Saridakis. Observational constraints on dynamical dark energy with pivoting redshift. Universe 5 (2019) 219.

B. F. Schutz, Determining the Hubble Constant from Gravitational Wave Observations. Nature, 323 (1986) 310.

D. E. Holz and S. A. Hughes, Using gravitational-wave standard sirens. Astrophys. J. 629 (2005) 15.

R. Gray et al., Cosmological inference using gravitational wave standard sirens: A mock data analysis. Phys. Rev. D, 101 (2020) 122001

B. P. Abbott et al., A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophys. J., 909 (2021) 218.

W. Del Pozzo, Inference of the cosmological parameters from gravitational waves: application to second generation interferometers. Phys. Rev. D, 86 (2012) 043011.

R. Abbott et al., Search of the Early O3 LIGO Data for Continuous Gravitational Waves from the Cassiopeia A and Vela Jr. Supernova Remnants. 11 (2021)

A. Gupta, D. Fox, B. S. Sathyaprakash, and B. F. Schutz, Calibrating the cosmic distance ladder using gravitational-wave observations. 10 (2019).

A. Nishizawa, Measurement of Hubble constant with stellarmass binary black holes. Phys. Rev. D, 96 (2017) 101303.

R. Nair, S. Bose, and T. Deep Saini, Measuring the Hubble constant: Gravitational wave observations meet galaxy clustering. Phys. Rev. D, 98 (2018) 023502.

R. Abbott et al., GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. 10 (2020)

R. Abbott et al., GW190412: Observation of a Binary-BlackHole Coalescence with Asymmetric Masses. Phys. Rev. D, 102 (2020) 043015.

R. Abbott et al., GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett., 896 (2020) L44.

D. M. Scolnic et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J., 859 (2018) 101.

M. Moresco et al., A 6% measurement of the Hubble parameter at z ∼ 0.45 direct evidence of the epoch of cosmic reacceleration. JCAP, 05 (2016) 014.

B. P. Abbott et al., Gwtc-1: a gravitational-wave transient catalog of compact binary mergers observed by ligo and virgo during the first and second observing runs. Phys. Rev. X, 9 (2019) 031040.

A. Mitra, J. Mifsud, D. F. Mota, and . Parkinson, Cosmology with the Einstein Telescope: No Slip Gravity Model and Redshift Specifications. 9 (2020).

C. Escamilla-Rivera, Status on bidimensional dark energy parameterizations using SNe Ia JLA and BAO datasets. Galaxies, 4 (2016) 8.

D. Huterer and M. S. Turner, Probing dark energy: Methods and strategies. Phys. Rev. D, 64 (2001) 123527.

Y. Wang, Figure of merit for dark energy constraints from current observational data. Phys. Rev. D, 77 (2008) 123525.

Christof Wetterich. Phenomenological parameterization of quintessence. Physics Letters B, 594 (2004) 17.

E. Belgacem et al., Testing modified gravity at cosmological distances with lisa standard sirens. Journal of Cosmology and Astroparticle Physics, 2019 (2019) 024.




How to Cite

C. Escamilla, “A dynamical dark energy solution to Hubble tension in the light of the multimessenger era”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 040702 1–, Jun. 2022.



07 Gravitation, Mathematical Physics and Field Theory