Cosmological-static metric correspondence and Kruskal type solutions from symmetry transformations

Authors

  • J. A. Nieto Universidad Autónoma de Sinaloa
  • Edgar Alejandro León Universidad Autónoma de Sinaloa
  • C. García-Quintero The University of Texas at Dallas

DOI:

https://doi.org/10.31349/RevMexFis.68.040701

Keywords:

Cosmology, Black Holes, Symmetries

Abstract

We develop a formalism which provides a new view for the transformation of spherically symmetric metrics, regarding cosmological and Kruskal type metrics. Our analysis begins with some general relevant dynamical metrics in cosmology, and prove that they all can be transformed to a unique static form. We extend the formalism to obtain generalized Kruskal type coordinates in cosmology and black hole theory. This extended formalism provides a novel mechanism to obtain suitable coordinate charts associated with spherically symmetric metrics. In particular, we obtain explicitly new Kruskal type coordinates for extremal Reissner-Nordström and Schwarzschild-de-Sitter metrics, as well for an extension of the de-Sitter metric.

Author Biography

Edgar Alejandro León, Universidad Autónoma de Sinaloa

I am a research professor at Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, since 2011.

References

C. W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation (W. H. Freeman and Company, San Francisco CA, 1970) pp. 616- 617.

S. M. Carroll, Spacetime and geometry: An introduction to general relativity (Addison-Wesley, San Francisco CA, 2004) pp. 329-336.

E. A. Leon, J. A. Nieto, R. Núñez-López, and A. Lipovka, Higher Dimensional Cosmology: Relations among the radii of two homogeneous spaces, Mod. Phys. Lett. A 26 (2011) 805, https://doi.org/10.1142/S0217732311035316.

B. Zink, E. Schnetter, and M. Tiglio, Multipatch methods in general relativistic astrophysics: Hydrodynamical flows on fixed backgrounds, Phys. Rev. D 77 (2008) 103015, https://doi.org/10.1103/PhysRevD.77.103015.

J. T. Giblin, D. Marolf, and R. Garvey, Spacetime Embedding Diagrams for Spherically Symmetric Black Holes, Gen. Rel. Grav. 36 (2004) 83, https://doi.org/10.1023/B:GERG.0000006695.17232.2e.

F. Melia, The apparent (gravitational) horizon in cosmology, Am. J. Phys. 86 (2018) 585, https://doi.org/10.1119/1.5045333.

R. C. Tolman, On the Astronomical Implications of the de Sitter Line Element for the Universe, Astrophys. J. 69 (1929) 245, https://doi.org/10.1086/143184.

C. Lanczos, Ein vereinfachendes Koordinatensystem für Einsteinschen Gravitationsgleichungen, Phys. Zeit. 23 (1922) 539.

R. L. Agacy, and W. H. McCrea, A Transformation of the De Sitter Metric and the law of Creation of Matter, MNRAS 123 (1962) 383, https://doi.org/10.1093/mnras/123.4.383.

M. G. J. van der Burg, Transformations Leaving the De Sitter Line-Element Invariant, MNRAS 131 (1966) 499, https://doi.org/10.1093/mnras/131.4.499.

P. S. Florides, The Robertson-Walker metrics expressible in static form, Gen. Rel. Grav. 12 (1980) 563, https://doi.org/10.1007/BF00756530.

A. Mitra, When can an “Expanding Universe” look “Static” and vice versa: A comprehensive study, Int. J. Mod. Phys D 24 (2015) 1550032, https://doi.org/10.1142/S0218271815500327.

F. Melia, Cosmological redshift in Friedmann-RobertsonWalker metrics with constant space-time curvature, MNRAS 422 (2012) 1418, https://doi.org/10.1111/j.1365-2966.2012.20714.x.

M. D. Kruskal, Maximal Extension of Schwarzschild Metric, Phys. Rev. 119 (1960) 1743, https://doi.org/10.1103/PhysRev.119.1743.

G. Szekeres, On the Singularities of a Riemannian Manifold, Publ. Math. Debrecen 7 (1960) 285, https://doi.org/10.1023/A:1020744914721.

C. Aviles-Niebla, P. A. Nieto-Marin, and J. A. Nieto, Towards exterior/interior correspondence of black-holes, Int. J. Geom. Meth. Mod. Phys. 17 (2020) 2050180, https://doi.org/10.1142/S0219887820501807.

J. C. Graves, and D. R. Brill, Oscillatory Character of Reissner Nordström Metric for an Ideal Charged Wormhole, Phys. Rev. 120 (1960) 1507, https://doi.org/10.1103/PhysRev.120.1507.

J.-Q. Guo, and P. S. Joshi, Interior dynamics of neutral and charged black holes, Phys. Rev. D 92 (2015) 064013, https://doi.org/10.1103/PhysRevD.92.064013.

J. A. Nieto, E. A. Leon, and V. M. Villanueva, HigherDimensional Charged Black Holes as Constrained Systems, Int. J. Mod. Phys. D 22 (2013) 1350047, https://doi.org/10.1142/S0218271813500478.

N. Cruz, M. Olivares, and J. R. Villanueva, The golden ratio in Schwarzschild-Kottler black holes, Eur. Phys. J. C 77 (2017) 123, https://doi.org/10.1140/epjc/s10052-017-4670-7.

G. W. Gibbons, and S. W. Hawking, Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D 15 (1977) 2738, https://doi.org/10.1103/PhysRevD.15.2738.

J. F. Beck, and A. Inomata, Kruskal-like representation of the de Sitter metric, J. Math. Phys. 25 (1984) 3039, https://doi.org/10.1063/1.526018.

W. Rindler, Analogies between Kruskal space and de Sitter space, Found. Phys. 15 (1985) 545. https://doi.org/10.1007/BF01882481.

S. Akcay, and R. Matzner, The Kerr-de Sitter universe, Class. Quant. Grav. 28 (2011) 085012, https://doi.org/10.1088/0264-9381/28/8/085012.

P. F. González-Díaz, Generalized de Sitter space, Phys. Rev. D 61 (2000) 024019, https://doi.org/10.1103/PhysRevD.61.024019.

J. Podolsky, The Structure of the Extreme Schwarzschild-de Sitter Space-time, Gen. Rel. Grav. 31 (1999) 1703, https://doi.org/10.1023/A:1026762116655.

M. Varadarajan, Kruskal coordinates as canonical variables for Schwarzschild black holes, Phys. Rev. D 63 (2001) 084007, https://doi.org/10.1103/PhysRevD.63.084007.

T. Jacobson, When is gttgrr = −1, Class. Quant. Grav. 24 (2007) 5717, https://doi.org/10.1088/0264-9381/24/22/N02.

K. A. Bronnikov, E. Elizalde, S. D. Odintsov, and O. B. Zaslavskii, Horizons versus singularities in spherically symmetric space-times, Phys. Rev. D 78 (2008) 064049, https://doi.org/10.1103/PhysRevD.78.064049.

K. Lake, Some notes on the Kruskal-Szekeres completion, Class. Quant. Grav. 27 (2010) 097001, https://doi.org/10.1088/0264-9381/27/9/097001.

F. Canfora, A. Giacomini, and R. Troncoso, Black holes, parallelizable horizons, and half-BPS states for the Einstein-GaussBonnet theory in five dimensions, Phys. Rev. D 77 (2008) 024002, https://doi.org/10.1103/PhysRevD.77.024002.

J. A. Nieto, and L. N. Alejo-Armenta, Hurwitz theorem and parallelizable spheres from tensor analysis, Int. J. Mod. Phys. A 16 (2001) 4207, https://doi.org/10.1142/S0217751X01005213.

Downloads

Published

2022-06-07

How to Cite

[1]
J. A. Nieto, E. A. León, and C. García-Quintero, “Cosmological-static metric correspondence and Kruskal type solutions from symmetry transformations”, Rev. Mex. Fís., vol. 68, no. 4 Jul-Aug, pp. 040701 1–, Jun. 2022.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory