Probing the effect of different exchange-correlation functionals on the optoelectronic features of chalcogenide compound Ag2O

Authors

DOI:

https://doi.org/10.31349/RevMexFis.69.011004

Keywords:

Chalcogenide compounds, mBJ-GGA-PBEsol U, Electronic structures, Optical response, DFT calculations

Abstract

The primary goal of this study is to investigate the effect of different exchange-correlation functionals on the optoelectronic and elastic properties of the Ag2O chalcogenide compound. For the electronic structures and optical spectra, the Tran-Blaha modified Becke-Johnson approach combined with GGA and with GGA+U (mBJ-GGA-PBEsol and mBJ-GGA-PBEsol+U, respectively) was used. The available theoretical and experimental data for the bandgap energy were reported to determine whether there is a correlation with our results. The electronic structure revealed that our compound is a direct semiconductor at the R-symmetry point with a bandgap of 1.22 eV, which this value agrees well with the experimental values for the first time. The elastic constants were also evaluated using the IRelast package, which revealed that the compound was mechanically stable. Finally, the optical response was systematically studied, and it was found that Ag2O exhibited excellent optical efficiency.

References

Kirfel A, Eichhorn K, Acta Crystallographica Section A: Foundations of Crystallography 1990, 46(4): 271–284.

Gordienko A, Zhuravlev YN, Fedorov D, Physics of the Solid State 2007, 49(2): 223–228.

Tjeng LH, Meinders MB, et al., Physical Review B 1990, 41(5): 3190.

Tominaga J, Journal of Physics: Condensed Matter 2003, 15(25): R1101.

Smith DF, Gucinski JA, Journal of power sources 1999, 80(1-2): 66–71.

Smith DF, Brown C, Journal of power sources 2001, 96(1): 121–127.

Pan J, Sun Y, et al., Journal of Materials Chemistry 2007, 17(45): 4820–4825.

Li H, Wang Y, He P, Zhou H, Chemical communications 2010, 46(12): 2055–2057.

Dellasega D, Facibeni A, et al., Nanotechnology 2008, 19(47): 475602.

Dellasega D, Facibeni A, et al., Applied surface science 2009, 255(10): 5248–5251.

Wang X, Wu HF, et al., Langmuir 2010, 26(4): 2774–2778.

Fang B, Gu A, et al., ACS applied materials & interfaces 2009, 1(12): 2829–2834.

Wang W, Zhao Q, et al., International journal of hydrogen energy 2011, 36(13): 7374–7380.

Fujimaki M, Awazu K, et al., Journal of applied physics 2006, 100(7): 074303.

Rollins T, Weichman F, Physica status solidi (b) 1966, 15(1): 233–237.

Crabtree RH, Journal of organometallic chemistry 2005, 690(24-25): 5451–5457.

Tian Q, Shi D, Sha Y, Molecules 2008, 13(4): 948–957.

a Beccara S, Dalba G, et al., Physical review letters 2002, 89(2): 025503.

Sanson A, Rocca F, Dalba G, Fornasini P, Grisenti R, Dapiaggi M, et al., Physical Review B 2006, 73(21): 214305.

Kennedy BJ, Kubota Y, Kato K, Solid state communications 2005, 136(3): 177–180.

Sanson A, Solid state communications 2011, 151(20): 1452–1454.

Pitzerr KS, Gerkin RE, et al., Pure and Applied Chemistry 1961, 2(1-2): 211–214.

Wiśniewski Z, Wiśniewski R, Nowiński J, Solid State Ionics 2003, 157(1-4): 275–280.

Pei F, Wu S, et al., Journal of the Korean Physical Society 2009, 55(3): 1243–1249.

Allen JP, Scanlon DO, Watson GW, Physical Review B 2011, 84(11): 115141.

Din HU, Reshak A, Computational materials science 2014, 83: 474–480.

Umezawa N, Shuxin O, Ye J, Physical Review B 2011, 83(3): 035202.

Sjöstedt E, Nordström L, Singh D, Solid state communications 2000, 114(1): 15–20.

Madsen GK, Blaha P, et al., Physical Review B 2001, 64(19): 195134.

Hohenberg P, Kohn W, Physical review 1964, 136(3B): B864.

Kohn W, Sham LJ, Physical review 1965, 140(4A): A1133.

Blaha P, Schwarz K, et al., The Journal of Chemical Physics 2020, 152(7): 074101.

Jiang W, Wu Z, et al., Applied Surface Science 2018, 427: 1202–1216.

Jamal M, Asadabadi SJ, et al., Computational Materials Science 2014, 95: 592–599.

Jamal M, Bilal M, et al., Journal of Alloys and Compounds 2018, 735: 569–579.

Murnaghan F, Proc. Nat. Acad. Sci. USA 1944, 30(12): 382.

G Wyckoff R, Crystal Structures, Interscience Publishers, London; 1965.

Yahia KZ, Engineering and Technology Journal 2008, 26(5): 570–578.

Elahmar MH, Rached H, Rached D, Materials Chemistry and Physics 2021, 267: 124712.

Rached H, Rached D, et al., Materials Chemistry and Physics 2013, 143(1): 93–108.

Bourachid I, Caid M, et al., Computational Condensed Matter 2020, 24: e00478.

Azzouz-Rached A, Babu MMH, et al., Materials Today Communications 2021, 27: 102233.

Azzouz-Rached A, Rached H, et al., International Journal of Quantum Chemistry 2021, 121(20): e26770.

Azzouz-Rached A, Hadi M, et al., Journal of Alloys and Compounds 2021, 885: 160998.

Ambrosch-Draxl C, Sofo JO, Computer physics communications 2006, 175(1): 1–14.

Caid M, Rached H, et al., Computational Condensed Matter 2021, 29: e00598.

Downloads

Published

2023-01-03

How to Cite

[1]
H. Mancer, M. Caid, H. Rached, Z. Nakoul, and D. Rached, “Probing the effect of different exchange-correlation functionals on the optoelectronic features of chalcogenide compound Ag2O ”, Rev. Mex. Fís., vol. 69, no. 1 Jan-Feb, pp. 011004 1–, Jan. 2023.