Investigation of optoelectronic properties of half-Heusler KZnN and KZnP compounds
DOI:
https://doi.org/10.31349/RevMexFis.69.060501Keywords:
Half-Heusler; KZnN; KZnP; mechanical; opticalAbstract
This is to investigate the structural, mechanical, electronic and optical properties of half-Heusler KZnN and KZnP compounds. The ab initio method based on density functional theory is employed. The study of structural properties has allowed us to verify the cubic structure type I that is the most stable among the three possible atomic arrangements for the two half-Heusler compounds. The mechanical stability is checked, since the calculated elastic constants obey the stability criteria of cubic. Our calculations have demonstrated that KZnN is a ductile material that is considerably stiffer than KZnP, which exhibits brittleness. The obtained results for the electronic properties with mBJ-GGA approximation reveal a semiconductor behavior with a band gap along Γ as estimated at 0.3 eV and 0.9 eV for KZnN and KZnP compounds, respectively. In addition, the optical properties have been studied by analyzing the variation of different parameters such as dielectric function, refractive index, reflectivity, absorption coefficient and conductance as a function of photon’s energy for a wide range; 0 - 40 eV. The origin of peaks in the optical spectra is determined in terms of calculated energy band structures. This work has predicted strong absorption in the ultraviolet field.
References
T. Graf, C. Felser, S.S.P. Parkin, Simple rules for the understanding of Heusler compounds. Prog. Solid. State Ch. 39 (2011) 1-50, https://doi.org/10.1016/j.progsolidstchem.2011.02.001
F. Heusler, Verh. Dtsch. Phys. Ges. 5 (1903) 219
D. Bang, N.H. Dan, N.A. Tuan, and N. X. Phuc, Magnetic and transport properties of Cu2MnAl Heusler alloy prepared by rapidly quenched method. J. Magn. Magn. Mater. 310 (2007) 48, https://doi.org/10.1016/j.jmmm.2006.07.027
K. Aniruddha Deb and Y. Sakurai, Electronic structure of the Cu2MnAl Heusler alloy, J. Phys.: Condens. Matter 12 (2000) 2997, https://iopscience.iop.org/0953-8984/12/13/310
L. Feng, E.K. Li, W.X. Zhang, W.H. Wang, and G.H. Wu, First-principles investigation of half-metallic ferromagnetism of half-Heusler compounds XYZ. J. Magn. Magn. 351 (2014) 92, https://dx.doi.org/10.1016/j.jmmm.2013.09.054
Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, and U. Mizutani, Semiconductor like Behavior of Electrical Resistivity in Heusler-type Fe2VAl Compound. Phys. Rev. Lett, 79 (1997) 1909, https://id.nii.ac.jp/1476/00004507
J. Winterlik, G.H.Fecher, A. Thomas and C. Felser, Superconductivity in palladium-based Heusler compounds, Phys. Rev. B 79 (2009) 064508, https://doi.org/10.1103/PhysRevB.79.064508
H. Itoh, T. Nakamichi, Y. Yamaguchi and N. Kazama. Neutron Diffraction Study of Heusler Type Alloy Mn0.47V0.28Al0.25. Trans. Japan. Inst. Met. 24 (1983) 265
H. Nakamura, Y. Kitaoka, K. Asayama, Y. Onuki, and T. Komatsubara, J. Magn. Magn. Mater, 76 (1988) 466
R.A. de Groot, F.M. Mueller, P.G.van Engen and K.H.J. Buschow, New Class of Materials: Half Metallic Ferromagnets, Phys. Rev. Lett, 50 (1983) 2024
M. Gilleßen and R. Dronskowski, A Combinatorial Study of Full Heusler Alloys by First-Principles Computational Methods, J. Comput. Chem. 30 (2009) 1290, https://doi.org/10.1002/jcc.21152
K. Ozdogan, E. Sasloglu, and I. Galanakis, Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D03-type Heusler alloys, J. Appl. Phys. 113 (2013) 193903, https://doi.org/10.1063/1.4840318
M. Ayad et al., First-principles calculations to investigate magnetic and thermodynamic properties of new multifunctional full-Heusler alloy Co2TaGa. Indian J. Phys. 94 (2020) 767, https://doi.org/10.1007/s12648-019-01518-3
I. Galanakis, P. Mavropoulos, and P. H. Dederichs, Electronic structure and Slater-Pauling behaviour in half-metallic Heusler alloys calculated from first principles, J. Phys D: Appl. Phys. 39 (2006) 765, https://doi.org/10.1088/0022-3727/39/5/S01
T. Gruhn, Comparative ab initio study of half-Heusler compounds for optoelectronic applications, Phys. Rev. B. 82 (2010) 125210, https://doi.org/10.1103/PhysRevB.82.125210
F. Benzoudji et al., Insight into the structural, elastic, electronic, thermoelectric, thermodynamic and optical properties of MRhSb (M=Ti, Zr, Hf) half-Heuslers from ab initio calculations. Chin. J. Phys. 59 (2019) 434, https://doi.org/10.1016/j.cjph.2019.04.009
N. Belmiloud, F. Boutaiba, A. Belabbes, M. Ferhat, and F. Bechstedt, Half-Heusler compounds with a 1 eV (1.7 eV) direct band gap, lattice-matched to GaAs (Si), for solar cell application: A first-principles study. Phys. Status Solidi B 253 (2016) 889, https://doi.org/10.1002/pssb.201552674
W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140 (1965) 1133, https://10.1103/physrev.140.a1133
T. Gruhn, Comparative ab initio study of half-Heusler compounds for optoelectronic applications. Phys. Rev. B 82 (2010) 125210, https://doi.org/10.1103/PhysRevB.82.125210
S. Kacimi, H. Mehnane, and A. Zaoui, I-II-V and I-IIIIV half-Heusler compounds for optoelectronic applications: Comparative ab initio study. Journal of Alloys and Compounds 587 (2014) 451, https://doi.org/10.1016/j.jallcom.2013.10.046
D. Kieven, R. Lenk, S. Naghavi, C. Felser and T. Gruhn, I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations. Phys. Rev. B. 81 (2010) 075208, https://doi.org/10.1103/PhysRevB.81.075208
J. Liu, Y. Zhao, C. Lian, Z. Dai, J.-Tao Sun and S. Meng, Ab initio study on anisotropic thermoelectric transport in ternary pnictide KZnP. J. Phys.: Mater. 2 (2019) 024001, https://doi.org/10.1088/2515-7639/ab05ea
H. Mehnane, B. Bekkouche, S. Kacimi, A. Hallouche, M. Djermouni, A. Zaoui, First-principles study of new half Heusler for optoelectronic applications. Superlattices Microstruct. 51 (2012) 772, https://doi.org/10.1016/j.spmi.2012.03.020
A.E. Carlsson, A. Zunger, D.M. Wood, Electronic structure of LiZnN: Interstitial insertion rule. Phys. Rev. B 32 (1985) 1386, https://doi.org/10.1103/physrevb.32.1386
H.J.F. Jansen and A.J. Freeman, Total -energy full-potential linearized augmented -plane -wave method for bulk solids: Electronic and structural properties of tungsten. Phys. Rev. B. 30 (1984) 561
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, Vienna University of Technology, Vienna, 2001. 27. K. Schwarz and P. Blaha, Solid state calculations using wien2k. Comput. Mater. Sci. 28 (2003) 259, https://doi.org/10.1016/S0927-0256(03)00112-5
J.P. Perdew, S. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77 (1996) 3865, https://doi.org/10.1103/physrevlett.77.3865
F. Tran and P Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 102 (2009) 226401, https://dx.doi.org/10.1103/PhysRevLett.102.226401
H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976) 5188, https://doi.org/10.1103/PhysRevB.13.5188
F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA. 30 (1944) 5390
Z. Naturforsch, On Ternary Pnictides and Chalkogenides of Alkaline Metals and IB-resp. II B-Elements, 33b (1978) 370, https://doi.org/10.1515/znb-1978-0404
M.J. Mehl, Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds, Phys. Rev. B: Condensed Matter 47 (1993) 2493, https://doi.org/10.1103/PhysRevB.47.2493
E. Schreiber, O.I. Anderson, N. Soga, Elastic Constants, and Their Measurements, McGraw-Hill Companies, Inc., (New York, 1973)
M. Born and K. Huang, Dynamical Theory of Crystal Lattice (Oxford: Oxford University Press) (1954)
VS.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 (1954) 823, https://doi.org/10.1080/14786440808520496
M. J. Mehl, B. K. Klein and D. A. Papa, Constantopoulos Intermetallic Compounds Principle and Practice. Principles. I. (eds.) J H Westbrook and R L Fleischeir (Hoboken: Wiley) (1995)
W. Voigt Lehrbush Der Kristall physik (Leipzig: Taubner) (1928)
J. Haines, J. M. Leger and G. Bocquillon, Synthesis and Design of Superhard Materials. Annu. Rev. Mater. Res. 31 (2001) 1, https://doi.org/10.1146/annurev.matsci.31.1.1
L. Ai and X. L. Gao, Metamaterials with negative Poisson’s ratio and non-positive thermal expansion, Compos. Struct. 162 (2017) 70. https://dx.doi.org/10.1016/j.compstruct.2016.11.056
C. F. Bohren, D. R. Huffman, Absorption and Scattering of light by small particles, Wiley-Interscience, New-York, (1983)
G. Harbeke, In Optical properties of solids (Ed: F. Abeles), North-Holland, Amsterdam (1972), 23
C. Kittel, Physique de l’etat solide, 5eme ed., Bordas, Paris, (1983)
H. Ehrenreich and H. Philips, Optical properties of Ag and Cu. Phys. Rev. 128 (1962) 1622
L. Lew, Y. Voon, and L. Ram-Mohan, Tight-binding representation of the optical matrix elements: Theory and applications. Phys. Rev. B 47 (1993) 15500, https://doi.org/10.1103/PhysRevB.47.15500
D. Allali et al., Electronic and optical properties of the SiB2O4 (B=Mg, Zn, and Cd) spinel oxides: An ab initio study with the Tran-Blaha-modified Becke-Johnson density functional, Physica B 443 (2014) 24, https://doi.org/10.1016/j. physb.2014.02.053
A. Fouad et al., Optical properties of GaX (X=P, As, Sb) under hydrostatic pressure, Experimental and Theoretical Nanotechnology 7 (2023) 283, https://doi.org/10.56053/7.2.283
N. Kojal, S. Javec, Structuraland thermal properties of H6Ta2O17, Experimental and Theoretical Nanotechnology 7 (2023) 309, https://doi.org/10.56053/7.2.309
V. Raman, and A. Rajan, Thermodynamic properties of MgFeH3 alloy, Experimental and Theoretical Nanotechnology 7 (2023) 381, https://doi.org/10.56053/7.2.381
S. Radiman, and M. Rusop, Investigation of structural and optical properties of In-doped AlSb nanostructures, Experimental and Theoretical Nanotechnology 7 (2023) 49, https://doi.org/10.56053/7.1.49
O. Jabbar and A. H. Reshak, Structural, electronic, and optoelectronic properties of XYZ2 (X=Zn,Cd; Y=Si,Sn;Z=pnicogens) Chalcopyrite compounds: Firstprinciples calculations, Experimental and Theoretical Nanotechnology 7 (2023) 97, https://doi.org/10.56053/7.1.97
J. Liu, and R. Yang, Structural, dynamical, thermodynamic properties of CdYF3 perovskite, Experimental and Theoretical Nanotechnology 7 (2023) 111, https://doi.org/10.56053/7.1.111
R. Sahnoun, Gap bowing of in Pb1-xCaxS, Pb1-xCaxSe and Pb1-xCaxTe alloys, Experimental and Theoretical Nanotechnology 7 (2023) 149, https://doi.org/10.56053/7.1.149
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S. Azzi, F. Belkharroubi, N. Ramdani, I. S. Messaoud, W. Belkilali, L. Drici, L. Blaha, I. Ameri, Yarub Al-Douri, A. Bouhemadou
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.