Black-Hole duality in four time and four space dimensions
DOI:
https://doi.org/10.31349/RevMexFis.69.010703Keywords:
black-holes, (4 4)-dimensions, quantum gravityAbstract
A black-hole solution in four time and four space dimensions ((4+4)-dimensions) is developed. It is emphasized that such a solution establishes a duality relation between the (1+3) and the (3+1) black-holes, which are part of the (4+4)-world. Moreover, it is found that a cosmological constant of the (1+3)-world is dual to the cosmological constant in the (3+1)-world.
References
M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory I and II (Cambridge University Press, 1987).
M. J. Duff, Int. J. Mod. Phys. A 11, 5623 (1996) ; hepth/9608117.
C. M. Hull, JHEP 11, 017 (1998); hep-th/9807127.
M. A. De Andrade, M. Rojas and F. Toppan, Int. J. Mod. Phys. A 16 (2001) 4453; hep-th/0005035.
M. Rojas, M. A. De Andrade, L. P. Colatto, J. L. MatheusValle, L. P. G. De Assis and J. A. Helayel-Neto, ”Mass Generation and Related Issues from Exotic Higher Dimensions“; hep-th/1111.2261.
J. A. Nieto and M. Espinoza, Int. J. Geom. Meth. Mod. Phys. 14 (2017) 1750014.
M. A. De Andrade and I.V. Vancea, “Action for spinor fields in arbitrary dimensions”; hep-th/0105025.
J. A. Nieto and E. Madriz, Phys. Scripta 94 (2019) 115303.
J. A. Nieto, Class. Quant. Grav. 23 (2006) 4387, e-Print: hepth/0509169
J. A. Nieto, Class. Quant. Grav. 22 (2005) 947; e-Print: hepth/0410260.
M. Medina, J. A. Nieto and P. A. Nieto-Marín, J. Mod. Phys. 12 (2021) 1027.
A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler, Oriented Matroids. Encyclopedia of Mathematics and Its Applications. 46 (2nd ed.). Cambridge University Press., 1999).
J. A. Nieto, Adv. Theor. Math. Phys. 8, 177 (2004); arXiv: hepth/0310071.
J. A. Nieto, Adv. Theor. Math. Phys. 10, 747 (2006), arXiv: hep-th/0506106.
J. A. Nieto, J. Math. Phys. 45, 285 (2004); arXiv: hepth/0212100.
J. A. Nieto, Nucl. Phys. B 883, 350 (2014); arXiv:1402.6998 [hep-th].
J. A. Nieto and M. C. Marín, J. Math. Phys. 41, 7997 (2000); hep-th/0005117.
J. A. Nieto, Phys. Lett. B 718, 1543 (2013); e-Print: arXiv:1210.0928 [hep-th].
J. A. Nieto, Phys. Lett. B 692, 43 (2010); e-Print: arXiv:1004.5372 [hep-th].
J. A. Nieto, Front. Phys., 6 (2018) (article 106).
J. H. Conway, On Number and Games, London Mathematical Society Monographs (Academic Press, 1976).
D. E. Knuth, Surreal Numbers: How Two Ex-Students Turned on To Pure Mathematicsand Found Total Happiness: A Mathematical Novelette (Addison-Wesley Publising Co, 1974).
H. Gonshor, An Introduction to the Theory of Surreal Numbers, London Mathematical Society Lectures Notes Series, Vol. 110 (Cambridge Univ. Press, 1986).
C. Avalos-Ramos, J. A. Felix-Algandar and J. A. Nieto, IOSR Journal of Mathematics, 16 (2020) 35-43.
J. A. Nieto, J. Mod. Phys. 7 (2016) 2164. 26. J. A. Nieto, Phys. Lett. A 262 (1999) 274.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Clarissa Avilés-Niebla, J. A. Nieto, J. F. Zamacona
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.