First-principles study of structural, electronic and magnetic properties of diluted magnetic semiconductor and superlattices based‏ on Cr-doped ZnS and ZnSe compounds in wurtzite-type crystal


  • Miloud Hadj Zoubir Djillali Liabes University of Sidi Bel Abbes
  • Oualid Cheref Djillali Liabes University of Sidi Bel Abbes
  • Mostefa Merabet Djillali Liabes University of Sidi Bel Abbes
  • Salah-Eddine Benalia Djillali Liabes University of Sidi Bel Abbes
  • Lakhdar Djoudi Djillali Liabes University of Sidi Bel Abbes
  • Djamel Rached Djillali Liabes University of Sidi Bel Abbes
  • M. Boucharef Djillali Liabes University of Sidi Bel Abbes



FP-LMTO; DMS; superlattices; spintronics


We performed first-principle calculations to investigate the structural, electronic, and magnetic properties of ZnS and ZnSe binary compounds, Zn0.5Cr0.5S and Zn0.5Cr0.5Se DMS alloys and (ZnS)2/Zn0.5Cr0.5Se and (ZnSe)2/Zn0.5Cr0.5S superlattices in the wurtzite structure using the full potential linear muffin–tin orbital  (FP-LMTO) method. Features such as lattice constant, modulus of compressibility and its first derivative, spin-polarized band structures, total and local or partial electronic densities of states and magnetic properties were calculated. The electronic structure shows that Zn0.5Cr0.5S and Zn0.5Cr0.5Se DMS alloys and (ZnS)2/Zn0.5Cr0.5Se and (ZnSe)2/Zn0.5Cr0.5S superlattices are half-metallic ferromagnetic with 100% complete spin polarization. The total magnetic moments calculated show the same integer value of 4 µB, which confirms the ferromagnetic half-metallic behavior of these compounds. We found that the ferromagnetic state is stabilized by the p-d exchange associated with the double-exchange mechanism. Zn0.5Cr0.5S and Zn0.5Cr0.5Se DMS alloys and (ZnS)2/Zn0.5Cr0.5Se and (ZnSe)2/Zn0.5Cr0.5S  superlattices are shown to be promising new candidates for applications in the fields of spintronics.


M. Shur, Introduction to electronic devices (J. Wiley, 1996)

A. Bar-Lev, Semiconductors and electronic devices (PrenticeHall, Inc., 1993)

P. Zhou et al., Numerical modeling of magnetic devices, IEEE Transactions on magnetics 40 (2004) 1803,

B. Bhushan, Tribology and mechanics of magnetic storage devices (Springer Science & Business Media, 2012)

S. D. Bader and S. S. P. Parkin, Spintronics, Annu. Rev. Condens. Matter Phys. 1 (2010) 71,

F. Pulizzi, Spintronics, Nature materials 11 (2012) 367,

M. Kaminska, A. Twardowski, D. Wasik, Mn and other magnetic impurities in GaN and other III-V semiconductors - perspective for spintronic applications, J. Mater. Sci.: Mater. Electron. 19 (2008) 828,

H. Ohno, Properties of ferromagnetic III-V semiconductors, J. Magn. Magn. Mater. 200 (1999) 110,

B. Doumi, A. Mokaddem, F. Dahmane, A. Sayede, A. Tadjer, A novel theoretical design of electronic structure and halfmetallic ferromagnetism in the 3d (V)-doped rock-salts SrS, SrSe, and SrTe for spintronics, RSC Adv. 112 (2015) 92328,

B. Doumi, A. Mokaddem, A. Sayede, F. Dahmane, Y. Mogulkoc, A. Tadjer, First-principles investigations on ferromagnetic behaviour of Be1−xVxZ (Z = S, Se and Te) (x = 0.25), Superlattices Microstruct. 88 (2015) 139,

U. P. Verma, S. Sharma, N. Devi, P. S. Bisht, P. Rajaram, Spinpolarized structural, electronic and magnetic properties of diluted magnetic semiconductors Cd1−xMnxTe in zinc blende phase, J. Magn. Magn. Mater. 323 (2011) 394,

H. Ohno, Making nonmagnetic semiconductors ferromagnetic, Science 281 (1998) 951,

G. A. Prinz, Magnetoelectronics, Science 282 (1998) 1660,

S. A. Wolf et al., Spintronics: a spinbased electronics vision for the future, Science 294 (2001) 1488,

S. D. Sarma, Spintronics: A new class of device based on electron spin, rather than on charge, may yield the next generation of microelectronics, Am. Sci. 89 (2001) 516,

S. J. Pearton et al., Advances in wide bandgap materials for semiconductor spintronics, Mater. Sci. Eng. R 40 (2003) 137,

I. Zutic, J. Fabian, S. D. Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76 (2004) 323,

K. Sato, H. Katayama-Yoshida, Material Design of GaNBased Ferromagnetic Diluted Magnetic Semiconductors, Jpn. J. Appl. Phys. 40 (2001) L485,

S. Y. Wu et al., Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films, Appl. Phys. Lett. 82 (2003) 3047,

A. Mokaddem, B. Doumi, A. Sayede, D. Bensaid, A. Tadjer, M. Boutaleb, Investigations of Electronic Structure and HalfMetallic Ferromagnets in Cr- Doped Zinc-Blende BeS Semiconductor, J. Supercond. Nov. Magn. 28 (2015) 157,

Y. Huang, W. Jie, G. Zha, First principle study on the electronic and magnetic properties in Zn0.75Cr0.25M (M = S, Se, Te) semiconductors, J. Alloys Compd. 539 (2012) 271,

H. Saito, V. Zayets, S. Yamataga, K. Ando, Magnetooptical studies of ferromagnetism in the II-VI diluted magnetic semiconductor Zn1-xCrxTe, Phys. Rev. B 66 (2002) 81201,

W. Mac, N. T. Khoi, A. Twardowski, M. Demianiuk, The s, p-d exchange interaction in Zn1-xCrxTe diluted magnetic semiconductors, J. Cryst. Growth 159 (1996) 993,

M. Herbich, W. Mac, A. Twardowski, K. Ando, D. Scalbert, A. Petrou, The s,p-d exchange interaction of Cd0.997Cr0.003S, J. Cryst. Growth 184 (1998) 1000,

H. S. Saini, M. Singh, A. H. Reshak, M. K. Kashyap, Variation of half metallicity and magnetism of Cd1-xCrxZ (Z=S, Se and Te) DMS compounds on reducing dilute limit, J. Magn. Magn. Mater. 331 (2013) 1,

Y. Huang, W. Jie, G. Zha, First principle study on the electronic and magnetic properties in Zn0.75Cr0.25M (M = S, Se, Te) semiconductors, J. Alloys Compd. 539 (2012) 271,

M. Boucharef et al., First-principles study of the electronic and structural properties of (CdTe)n/(ZnTe)n superlattices, Superlattices and Microstructures 75 (2014) 818,

L. Djoudi, M. Merabet, M. Boucharef, S. Benalia, and D. Rached, Firstprinciples calculations to investigate structural, electronic and optical properties of (BeTe)n/(CdS)n superlattices, Superlattices and Microstructures 75 (2014) 233,

S. Benalia et al., Band gap behavior of scandium aluminum phosphide and scandium gallium phosphide ternary alloys and superlattices, Materials Science in Semiconductor Processing 31 (2015) 493,

M. Asif Khan, A. B., J. N. Kuznia, and D. T. Olson, High electron mobility transistor based on a GaN-AlGaN heterojunction, Applied Physics Letters 63 (1993) 1214,

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Highbrightness In- GaN blue, green and yellow light-emitting diodes with quantum well structures, Japanese Journal of Applied Physics 34 (1995) L797,

P. S. Zory., Quantum well lasers (Academic Press., 1993)

M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Bluegreen laser diodes, Applied Physics Letters 59 (1991) 1272,

L. Freidman, Thermoelectric power of superlattices, Surface science 142 (1984) 241,

H. Ohta, Y. Mune, K. Koumoto, T. Mizoguchi, Y. Ikuhara, Critical thickness for giant thermoelectric Seebeck coefficient of 2DEG confined in SrTiO−3/SrTi0.8Nb0.2O3 superlattices, Thin Solid Films 516 (2008) 5916,

S. K. Biswas, A. R. Ghatak, A. Neogi, A. Sharma, S. Bhattacharya, K. P. Ghatak, Simple theoretical analysis of the thermoelectric power in quantum dot superlattices of non-parabolic heavily doped semiconductors with graded interfaces under strong magnetic field, Physica E 36 (2007) 163,

X. Liu, A. Petrou, J. Warnock, B. T. Jonker, G. A. Prinz, and J. J. Krebs, Spin-dependent type-I, type-II behavior in a quantum well system, Phys. Rev. Lett. 63 (1989) 2280,

M. von Ortenberg, Spin Superlattice with Tunable Minigap, Phys. Rev. Lett. 49 (1982) 1041,

W. C. Chou, A. Petron, J. Warnock, and B. T. Jonker, Spin superlattice behavior in ZnSe/Zn0.99Fe0:0.01Se quantum wells, Phys. Rev. Lett. 67 (1991) 3820,

N. Dai, H. Luo, F. C. Zhang, N. Samarth, M. Dobrowolska, and J. K. Furdyna, Spin superlattice formation in ZnSe/Zn1- xMnxSe multilayers, Phys. Rev. Lett. 67 (1991) 3824,

B. T. Jonker et al., Spin separation in diluted magnetic semiconductor quantum well systems, J. Appl. Phys. 69 (1991) 6097,

S. R. Jackson et al., Magnetooptical study of excitonic binding energies, band offsets, and the role of interface potentials in CdTe/Cd1-xMnxTe multiple quantum wells, Phys. Rev. B 50 (1994) 5392,

D. R. Yakovlev et al., Exciton magnetic polarons in shortperiod CdTe/Cd1-xMnxTe superlattices, Phys. Rev. B 52 (1995) 12033,

B. T. Jonker, H. Abad, L. P. Fu, W. Y. Yu, A. Petrou, and J. Warnock, Coexistence of Brillouin and Van Vleck spin exchange in Zn1A¡xMnxSe/Zn1-yFeySe spin superlattice structures, J. Appl. Phys. 75 (1994) 5725,

W. Ossau, B. Kuhn-Heinrich, G. Mackh, A. Waag, and G. Landwehr, Spin dependent confinement effects in Cd0.9Mn0.1TeCd0.9Mg0.1Te spin superlattices, J. Cryst. Growth 159 (1996) 1052,

P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B 136 (1964) 864,

W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A 140 (1965) 1133,

S. Yu. Savrasov, D. Yu. Savrasov, Full-potential linear-muffintin-orbital method for calculating total energies and forces, Phys. Rev. B 46 (1992) 12181,

S. Yu. Savrasov, Linear-response theory and lattice dynamics: A muffintin- orbital approach, Phys. Rev. B 54 (1996) 6470,

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Letts. 77 (1996) 3865,

F. D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc. Natl. Acad. Sci. USA 30 (1947) 244,

S. Desgreniers, L. Beaulieu, and I. Lepage, Pressure-induced structural changes in ZnS, Phys. Rev. B 61 (2000) 8726,

K. Wright, J. D. Gale, Interatomic potentials for the simulation of the zinc-blende and wurtzite forms of ZnS and CdS: Bulk structure, properties, and phase stability, Phys. Rev. B 70 (2004) 035211,

A. E. Merad, M. B. Kanoun, G. Merad, J. Cibert, and H. Aourag, Fullpotential investigation of the electronic and optical properties of stressed CdTe and ZnTe, Mater. Chem. Phys. 92 (2005) 333,

M. Z. Huang and W. Y. Ching, Calculation of optical excitations in cubic semiconductors. I. Electronic structure and linear response, Phys. Rev. B 47 (1993) 9449,

S. J. Yun, G. Lee, J. S. Kim, S. K. Shin, and Y. G. Yoon, Electronic structure and optical absorption spectra of CdSe covered with ZnSe and ZnS epilayers, Solid State Commun. 137 (2006) 332,

O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe, Phys. Rev. B 50 (1994) 10780,

A. Lakdja, D. Mesri, H. Rozale, A. Chahed, and P. Ruterana, Spin polarization in wurtzite Zn1-xCrxS from first principles, Phys. Status Solidi B 249 (2012) 2222,

R. Belacel, S. Benalia, M. Merabet, L. Djoudi, and D. Rached, Theoretical study of structural, electronic and optical properties of ScxTl1-xP ternary alloys and (ScP)n/(TlP)n superlattices by FP-LMTO method, Optik 178 (2019) 243,

J. P. Perdew and M. Levy, Physical Content of the Exact KohnSham Orbital Energies: Band Gaps and Derivative Discontinuities, Phys. Rev. Lett. 51 (1983) 1884,




How to Cite

M. Hadj Zoubir, “First-principles study of structural, electronic and magnetic properties of diluted magnetic semiconductor and superlattices based‏ on Cr-doped ZnS and ZnSe compounds in wurtzite-type crystal”, Rev. Mex. Fís., vol. 70, no. 2 Mar-Apr, pp. 020501 1–, Mar. 2024.