Exact Green's functions for localized irreversible potentials


  • Jorge Israel Castro-Alatorre IF-BUAP
  • David Condado IF-BUAP
  • Emerson Sadurni IFUAP




Point-like interactions, Maxwell's demon, Green's functions


We study the quantum-mechanical problem of scattering caused by a localized obstacle that breaks spatial and temporal reversibility. Accordingly, we follow Maxwell's prescription to achieve a violation of the second law of thermodynamics by means of a momentum-dependent interaction in the Hamiltonian, resulting in what is known as Maxwell's demon. We obtain the energy-dependent Green's function analytically, as well as its meromorphic structure. The poles lead directly to the solution of the evolution problem, in the spirit of M. Moshinsky's work published in the 1950s. Symmetric initial conditions are evolved in this way, showing important differences between classical and wave-like irreversibility in terms of collapses and revivals of wave packets. Our setting can be generalized to other wave operators, e.g. electromagnetic cavities in a classical regime.


M. Moshinsky, Diffraction in time, Physical Review 88 (1952) 625

M. Moshinsky, Boundary conditions and time-dependent states, Physical Review 84 (1951) 525

M. Moshinsky, Poles of the S matrix for resonance reactions, Physical Review 91 (1953) 984

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, andW. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Physical Review Letters 75 (1995) 3969-3973

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269 (1995) 198

M. Meister, A. Roura, E. M. Rasel, and W. P. Schleich, The space atom laser: an isotropic source for ultra-cold atoms in microgravity, New Journal of Physics 21 (2019) 013039

C.-C. Chen, R. G. Escudero, J. Minář, B. Pasquiou, S. Bennetts, and F. Schreck, Continuous Bose-Einstein condensation, Nature 606 (2022) 683

J. C. Maxwell, Theory of Heat (Cambridge University Press, 2009)

C. Dorso and J. Randrup, Early recognition of clusters in molecular dynamics, Physics Letters B 301 (1993) 328

P. Cordero and E. S. Hernández, Momentum-dependent potentials: Towards the molecular dynamics of fermionlike classical particles, Physical Review E 51 (1995) 2573

Y. Nara, T. Maruyama, and H. Stoecker, Momentumdependent potential and collective flows within the relativistic quantum molecular dynamics approach based on relativistic mean-field theory, Physical Review C 102 (2020) 024913

C. Grosche and F. Steiner, Handbook of Feynman Path Integrals (Springer Berlin Heidelberg, 1998)

L. S. Schulman, Techniques and Applications of Path Integration (Dover, 2005)

L. Szilard, Über die entropieverminderung in einem thermodynamischen system bei eingriffen intelligenter wesen, Zeitschrift fur Physik 53 (1929) 840

L. Brillouin, Maxwell’s demon cannot operate: Information and entropy, Journal of Applied Physics 22 (1951) 334

R. Landauer, Irreversibility and heat generation in the computing process, IBM, Journal of Research and Development 5 (1961) 183

C. H. Bennett, The thermodynamics of computation - a review, International Journal of Theoretical Physics 21 (1982) 905

S. Lloyd, Quantum-mechanical Maxwell’s demon, Physical Review A 56 (1997) 3374

K. Maruyama, F. Nori, and V. Vedral, Colloquium: The physics of Maxwell’s demon and information, Reviews of Modern Physics 81 (2009) 1

M. Plesch, O. Dahlsten, J. Goold, and V. Vedral, Maxwell’s demon: Information vs. particle statistics, Scientific Reports 4 (2014) 6995

H. S. Leff and A. F. Rex, Maxwell’s Demon: Entropy, Information, Computing (Bonnier Publishing Fiction, 2014)

M. O. Scully, Extracting work from a single thermal bath via quantum negentropy, Physical Review Letters 87 (2001) 220601

G. N. Price, S. T. Bannerman, K. Viering, E. Narevicius, and M. G. Raizen, Single-photon atomic cooling, Physical Review Letters 100 (2008) 093004

P. A. Camati et al., Experimental rectification of entropy production by Maxwell’s demon in a quantum system, Physical Review Letters 117 (2016) 240502

N. Cottet et al., Observing a quantum Maxwell demon at work, Proceedings of the National Academy of Sciences 114 (2017) 7561

C. Elouard, D. Herrera-Martı, B. Huard, and A. Auffeves, Extracting work from quantum measurement in Maxwell’s demon engines, Physical Review Letters 118 (2017) 260603

A. Ruschhaupt, J. G. Muga, and M. G. Raizen, One-photon atomic cooling with an optical Maxwell demon valve, Journal of Physics B 39 (2006) 3833

M. D. Vidrighin, O. Dahlsten, M. Barbieri, M. S. Kim, V. Vedral, and I. A. Walmsley, Photonic Maxwell’s demon, Physical Review Letters 116 (2016) 050401

A. Kumar, T.-Y.Wu, F. Giraldo, and D. S.Weiss, Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon, Nature 561, (2018) 83-87

Y. Masuyama et al., Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system, Nature Communications 9 (2018) 1291

B.-L. Nájera-Santos et al., Autonomous Maxwell’s demon in a cavity QED system, (2020). arXiv:2001.07445v1 [quant-ph] https://arxiv.org/abs/2001.07445v1

B. Annby-Andersson, P. Samuelsson, V. F. Maisi, and P. P. Potts, Maxwell’s demon in a double quantum dot with continuous charge detection, Physical Review B 101 (2020) 165404

K. Chida, S. Desai, K. Nishiguchi, and A. Fujiwara, Power generator driven by Maxwell’s demon, Nature Communications 8 (2017) 15310

G. Schaller, J. Cerrillo, G. Engelhardt, and P. Strasberg, Electronic Maxwell demon in the coherent strong-coupling regime, Physical Review B 97 (2018) 195104

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (Dover, 1965)

Y. Hernández, A. Rosado, and E. Sadurní, The stabilizer group of honeycomb lattices and its application to deformed monolayers, Journal of Physics A 49 (2016) 485201

W. P. Schleich, Quantum Optics in Phase Space (Wiley, 2001)

W. Schleich, Factorization of numbers and Gauss sums, in Conference on Coherence and Quantum Optics (OSA) (2007) paper CMH2

S. M. Blinder, Green’s function and propagator for the onedimensional δ-function potential, Physical Review A 37 (1988) 973

M. Moshinsky, E. Sadurn´ı, and A. del Campo, Alternative method for determining the Feynman propagator of a nonrelativistic quantum mechanical problem, Symmetry, Integrability and Geometry: Methods and Applications (2007). https://doi.org/10.3842/sigma.2007.110




How to Cite

J. I. Castro-Alatorre, D. Condado, and E. Sadurni, “Exact Green’s functions for localized irreversible potentials”, Rev. Mex. Fís., vol. 69, no. 5 Sep-Oct, pp. 050401 1–, Sep. 2023.



04 Atomic and Molecular Physics