Impact of AlN interlayer on the electronic and I-V characteristics of In0.17Al0.83N/GaN HEMTs devices

Authors

  • Abdelmalek Douara Tissemsilt University
  • Abdelaziz Rabehi Djelfa University of Algeria
  • Oussama Baitiche Ammar Thlidji University of Laghouat

DOI:

https://doi.org/10.31349/RevMexFis.69.031602

Keywords:

HEMTs, AlN interlayer, Nextnano, 2D–electron gas.

Abstract

Here, we study a simulation model of In0.17Al0.83N/GaN passivated high electron mobility transistors (HEMTs) on SiC substrate. The research focused systematically on the effet of AlN interlayer on the electronic and electric characteristics using the Nextnano simulation software. The 2D–electron gas density of  In0.17Al0.83N/AlN/GaN HEMTs is investigated through the dependence on various AlN layer thickness, we report calculations of  I-V characteristics, with 1.5 nm AlN thickness, we find the highest maximum output current of 1.81 A/mm at Vgs  1 V, and more than 450 mS/mm as a transconductance peak. The Results are in agreement with experimental data.

References

Kacha, A. H., Akkal, B., Benamara, Z., Amrani, M., Rabhi, A., Monier, G., ... & Gruzza, B. (2015). Effects of the GaN layers and the annealing on the electrical properties in the Schottky diodes based on nitrated GaAs. Superlattices and Microstructures, 83, 827-833.‏

Rabehi, A., Amrani, M., Benamara, Z., Akkal, B., Hatem-Kacha, A., Robert-Goumet, C., ... & Gruzza, B. (2015). Study of the characteristics current-voltage and capacitance-voltage in nitride GaAs Schottky diode. The European Physical Journal Applied Physics, 72(1), 10102.‏

Zhang, Y., Wu, J., Aagesen, M., & Liu, H. (2015). III–V nanowires and nanowire optoelectronic devices. Journal of Physics D: Applied Physics, 48(46), 463001.‏

Rabehi, A., Amrani, M., Benamara, Z., Akkal, B., & Kacha, A. H. (2016). Electrical and photoelectrical characteristics of Au/GaN/GaAs Schottky diode. Optik, 127(16), 6412-6418.‏

Rabehi, A., Amrani, M., Benamara, Z., Akkal, B., Ziane, A., Guermoui, M., ... & Robert-Goumet, C. (2018). Simulation and experimental studies of illumination effects on the current transport of nitridated GaAs Schottky diode. Semiconductors, 52(16), 1998-2006.‏

Helal, H., Benamara, Z., Kacha, A. H., Amrani, M., Rabehi, A., Akkal, B., ... & Robert-Goumet, C. (2019). Comparative study of ionic bombardment and heat treatment on the electrical behavior of Au/GaN/n-GaAs Schottky diodes. Superlattices and Microstructures, 135, 106276.‏

Douara, A., Kermas, N., & Djellouli, B. (2016). Capacitance Models of AlGaN/GaN High Electron Mobility Transistors. International Journal of Nuclear and Quantum Engineering, 10(3), 420-423.‏

Narang, K., Singh, V. K., Pandey, A., Khan, R., Bag, R. K., Rawal, D. S., ... & Singh, R. (2022). Suitability of thin-GaN for AlGaN/GaN HEMT material and device. Journal of Materials Science, 57(10), 5913-5923.‏

Fletcher, A. A., & Nirmal, D. (2017). A survey of Gallium Nitride HEMT for RF and high power applications. Superlattices and Microstructures, 109, 519-537.‏

Ren, J., Yan, D., Zhai, Y., Mou, W., & Gu, X. (2016). Comparison of electrical characteristics between AlGaN/GaN and lattice-matched InAlN/GaN heterostructure Schottky barrier diodes. Microelectronics Reliability, 61, 82-86.‏

Ren, J., Yan, D., Zhai, Y., Mou, W., & Gu, X. (2016). Comparison of electrical characteristics between AlGaN/GaN and lattice-matched InAlN/GaN heterostructure Schottky barrier diodes. Microelectronics Reliability, 61, 82-86.‏

Liu, Y., He, X., Dong, Y., Fu, S., Liu, Y., & Chen, D. (2022). The Sensing Mechanism of InAlN/GaN HEMT. Crystals, 12(3), 401.‏

Kohn, E., & Medjdoub, F. (2007, December). InAlN-A new barrier material for GaN-based HEMTs. In 2007 International Workshop on Physics of Semiconductor Devices (pp. 311-316). IEEE.‏

Murugapandiyan, P., Ravimaran, S., & William, J. (2017). 30 nm T-gate enhancement-mode InAlN/AlN/GaN HEMT on SiC substrates for future high power RF applications. Journal of Semiconductors, 38(8), 084001.‏

Han, T., Dun, S., Lü, Y., Gu, G., Song, X., Wang, Y., ... & Feng, Z. (2016). 70-nm-gated InAlN/GaN HEMTs grown on SiC substrate with fT/fmax> 160 GHz. Journal of Semiconductors, 37(2), 024007.‏

Medjdoub, F., Carlin, J. F., Gonschorek, M., Feltin, E., Py, M. A., Ducatteau, D., ... & Kohn, E. (2006, December). Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices?. In 2006 International Electron Devices Meeting (pp. 1-4). IEEE.‏

Online Available: http://www.wsi.tum.de/nextnano3 and http://www.nextnano.de.

Li, F., Liu, Q. H., & Klemer, D. P. (2016). Numerical Simulation of high electron mobility transistors based on the spectral element Method. The Applied Computational Electromagnetics Society Journal (ACES), 1144-1150.‏

Carvalho, L. B. D., Santos, W. C. D., & Correa, E. D. A. (2019). Solution of the 1d Schrödinger Equation for a Symmetric Well. Revista Brasileira de Ensino de Física, 41.‏

Acharyya, A., Chatterjee, S., Das, A., & Singh, K. A. (2015). Self-consistent solution of Schrödinger–Poisson equations in a reverse biased nano-scale p-n junction based on Si/Si0.4Ge0.6/Si quantum well. Journal of Computational Electronics, 14(1), 180-191.‏

Tan, I. H., Snider, G. L., Chang, L. D., & Hu, E. L. (1990). A self‐consistent solution of Schrödinger–Poisson equations using a nonuniform mesh. Journal of applied physics, 68(8), 4071-4076.‏

Douara, A., Djellouli, B., Abid, H., Rabehi, A., Ziane, A., Mostefaoui, M., ... & Dif, N. (2019). Optimization of two‐dimensional electron gas characteristics of AlGaN/GaN high electron mobility transistors. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32(2), e2518.‏

Bag, A., Das, P., Kumar, R., Mukhopadhyay, P., Majumdar, S., Kabi, S., & Biswas, D. (2015). 2DEG modulation in double quantum well enhancement mode nitride HEMT. Physica E: Low-dimensional Systems and Nanostructures, 74, 59-64.‏

Ambacher, O., Christian, B., Yassine, M., Baeumler, M., Leone, S., & Quay, R. (2021). Polarization induced interface and electron sheet charges of pseudomorphic ScAlN/GaN, GaAlN/GaN, InAlN/GaN, and InAlN/InN heterostructures. Journal of Applied Physics, 129(20), 204501.‏

Qin, J., Zhou, Q., Liao, B., & Wang, H. (2018). Modeling of 2DEG characteristics of InxAl1− xN/AlN/GaN-Based HEMT Considering Polarization and Quantum Mechanical Effect. Electronics, 7(12), 410.‏

Han, T. C., Zhao, H. D., Yang, L., & Wang, Y. (2017). Simulation study of InAlN/GaN high-electron mobility transistor with AlInN back barrier. Chinese Physics B, 26(10), 107301.‏

TCAD silvaco, Atlas user’s manual, santa Clara .2016

Downloads

Published

2023-05-01

How to Cite

[1]
A. . Douara, A. Rabehi, and O. . Baitiche, “Impact of AlN interlayer on the electronic and I-V characteristics of In0.17Al0.83N/GaN HEMTs devices”, Rev. Mex. Fís., vol. 69, no. 3 May-Jun, pp. 031602 1–, May 2023.