Structural, mechanical, electronic, thermal, and optical properties of the inverse-Heusler compounds X2RuPb(X = La, Sc): A first-principles investigation

Authors

  • Abdelkader BOUAZZA University of Tiaret
  • M. Khirat Djillali Liabes University of Sidi Bel-Abbes
  • M. Larbi Djillali Liabes University of Sidi Bel-Abbes
  • N. Bettahar
  • D. Rached

DOI:

https://doi.org/10.31349/RevMexFis.69.050501

Keywords:

Inverse-Heusler compounds; density functional theory; topological insulators; mechanical properties; optical properties; elastic constants

Abstract

Topological insulators are novel quantum material states with insulating bulk band gaps and topologically protected metallic surface states that have been extensively studied owing to their intriguing properties for spintronic and quantum-computing applications. The structural, mechanical, electronic, thermal, and optical properties of inverse Heusler compounds La2RuPb and, Sc2 RuPb in two Hg2CuTi, Cu2 MnAltype structures were calculated using the full potential linear muffin-tin orbital simulation methodology as implemented in the computer code,which is based on density functional theory.We employed the local-density approximation for the exchange and correlation potential (XC) terms. Consequently, the optical characteristics of La2 RuPb, Sc2 RuPb and elastic constants Cij and their corresponding elastic moduli were computed for the first time. According to our structural calculations, La2 RuPb is more stable in its Hg2 CuTi-type structure than Sc2 RuPb in its Cu2 MnAl-type structure. However, the mechanical characteristics demonstrate their stability in the final stages of elastic deformation.

References

F. Heusler, Über magnetische manganlegierungen. Verhandlungen der Deutschen Physikalischen Gesellschaft 5 (1903) 219.

M. Khirat, et al., First principles calculations of the band ordering conversion in the LaxSc2−xRuP b compounds. Solid State Communications 276 (2018) 14, https://doi.org/10.1016/j.ssc.2018.03.018

S. Chadov et al., Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Mater 9 (2010) 541, https://doi.org/10.1038/nmat2770

H. Lin et al., Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nature Mater 9 (2010) 546, https://doi.org/10.1038/nmat2771

R. A. De Groot et al., New class of materials: half-metallic ferromagnets. Physical review letters 50 (1983) 2024, https://doi.org/10.1103/PhysRevLett.50.2024

C. Felser et al., Investigation of a novel material for magnetoelectronics: Co2Cr0. 6Fe0. 4Al. Journal of Physics: Condensed Matter 15 (2003) 7019, https://doi.org/10.1088/0953-8984/15/41/010

D. Kieven, et al., I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations. Phys. Rev. B 81 (2010): 075208. https://doi.org/10.1103/PhysRevB.81.075208

L. Kautzsch, et al., Are AuPd TM (T= Sc, Y and M= Al, Ga, In), Heusler Compounds Superconductors without Inversion Symmetry?. Materials 12 (2019) 2580, https://doi.org/10.3390/ma12162580

Ch. G. F. Blum et al., Exploring the details of the martensiteaustenite phase transition of the shape memory Heusler compound Mn 2 NiGa by hard x-ray photoelectron spectroscopy, magnetic and transport measurements. Applied Physics Letters 98 (2011) 252501, https://doi.org/10.1063/1.3600663

B. Dieny, et al. Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B. 43 (1991) 1297, https://doi.org/10.1103/PhysRevB.43.1297

Heusler, Fr. Magnetismus und Kristallstruktur bei Manganaluminiumkupfer. Zeitschrift für anorganische und allgemeine Chemie 161 (1927) 159, https://doi.org/10.1002/zaac.19271610113

Y. M. Cho, et al. Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1-x(Co 0.5 Fe 0.5) x O thin films. Applied Phys. Let. 80 (2002) 3358, https://doi.org/10.1063/1.1478146

A. Bouazza, Sputtering of semiconductors, conductors, and dielectrics for the realization of electronics components thinfilms. Int. J. Thin Film Science and Technology 11 (2022) 225, https://doi.org/10.18576/ijtfst/110210

A. Bouazza, Deposition of Thin Films Materials used in Modern Photovoltaic Cells. Int. J. Thin. Film. Sci. Tec. 11 (2022) 313, https://doi.org/10.18576/ijtfst/110308

R. Salah Eddine Chouaib, A. Bouazza, and Y. Belhadji, 3D sputtering simulations of the CZTS, Si and CIGS thin films using Monte-Carlo method. Monte Carlo Methods and Applications 27 (2021) 373, https://doi.org/10.1515/mcma-2021-2094

L. Fu, L. K. Charles, and J. M. Eugene Topological insulators in three dimensions. Phys. Rev. Let. 98 (2007) 106803, https://doi.org/10.1103/PhysRevLett.98.106803

J. E. Moore, The birth of topological insulators. Nature 464 (2010) 194, https://doi.org/10.1038/nature08916

Bernevig, B. Andrei, Taylor L. Hughes, and Shou-Cheng Zhang. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314 (2006) 1757, https://doi.org/10.1126/science.1133734

M. Konig, et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318 (2007) 766, https://doi.org/10.1126/science.1148047

O. Heusler, Kristallstruktur und Ferromagnetismus der Mangan-Aluminium-Kupferlegierungen. Annalen der Physik 411 (1934) 155, https://doi.org/10.1002/andp.19344110205

T. Graf, F. Claudia and S.P.P. Stuart, Simple rules for the understanding of Heusler compounds. Progress in solid state chemistry 39 (2011) 1, https://doi.org/10.1016/j.progsolidstchem.2011.02.001

F. Ahmadian, New Heusler Compounds Cr 2 YSb (Y= Fe, Co and Ni): Magnetic and Electronic Properties. J. superconductivity and novel magnetism 26 (2013) 1737, https://doi.org/10.1007/s10948-012-1893-6

J. Drews, E. Ursula and S. Hans-Uwe, Optische Untersuchungen an farbigen Intermetallischen phasen. Journal of the Less Common Metals 116 (1986) 271, https://doi.org/10.1016/0022-5088(86)90235-3

N. Tezuka, et al. Improved tunnel magnetoresistance of magnetic tunnel junctions with Heusler Co 2 FeAl 0.5 Si 0.5 electrodes fabricated by molecular beam epitaxy. Applied Phys. Lett. 94 (2009) 162504, https://doi.org/10.1063/1.3116717

X. Dai, et al. New quarternary half metallic material CoFeMnSi. J. Applied Phy. 105 (2009) 07E901. https://doi.org/10.1063/1.3062812

E. Ursula, W. Seelentag, and S. Hans-Uwe, Zur Kenntnis farbiger ternärer und quaternärer Zintl-Phasen/Coloured Ternary and Quaternary Zintl-Phases. Zeitschrift fur Naturforschung B 35 (1980) 1341, https://doi.org/10.1515/znb-1980-1103

W. Feng et al. Three-Dimensional Topological Insulators in I- III- VI 2 and II- IV- V 2 Chalcopyrite Semiconductors. Phys. Rev. Lett. 106 (2011) 016402, https://doi.org/10.1103/PhysRevLett.106.016402

X. M. Zhang et al. Prediction of topological insulating behavior in inverse Heusler compounds from first principles. Computational materials science 70 (2013) 145, https://doi.org/10.1016/j.commatsci.2012.12.013

A. Bouazza, Investigation using Monte-Carlo codes simulations for the impact of temperatures and high pressures on thin films quality. Rev. Mex. Fis. 69 (2023) 021501, https://doi.org/10.31349/RevMexFis.69.021501

A. Bouazza, Simulation of the Deposition of Thin-Film Materials Used in the Manufacturing of Devices with Miniaturized Circuits. J. Sur.Investigation: X-ray, Synchrotron and Neutron Techniques 16 (2022) 1221, https://doi.org/10.1134/S1027451022060283

A. Bouazza and S. Abderrahmane Understanding the contribution of energy and angular distribution in the morphology of thin films using Monte Carlo simulation. Monte Carlo Methods and Applications 24 (2018) 215, https://doi.org/10.1515/mcma-2018-0019

A. Bouazza, 3D Visualization of the Effect of Plasma Temperature on Thin-Film Morphology. Bull. Lebedev Phys. Inst., 50 (2023) 7, https://doi.org/10.1134/S1027451022060283

Y. Lakred, S. Bahlouli, and M. Elchikh. Electronic and topological properties in heavy-element based Heusler compounds X 2 RuPb (X= Sc, Y, La): first-principle method. The European Physical Journal B 94 (2021) 135, https://doi.org/10.1140/epjb/s10051-021-00141-8

K. Mun Wong et al. First-principles investigation of the sizedependent structural stability and electronic properties of Ovacancies at the ZnO polar and non-polar surfaces. J. Appli. Phys. 113 (2013) 014304, https://doi.org/10.1063/1.4772647

S. Yu. Savrasov, Linear-response theory and lattice dynamics: A muffin-tin-orbital approach. Phys. Rev. B 54 (1996) 16470, https://doi.org/10.1103/PhysRevB.54.16470

M. Larbi et al. First Principle Investigation of Structural, Electronic and Optical Properties of Quaternary B x In y Ga 1-x-y N Compounds. Spin. 10 World Scientific Publishing Company, 2020. https://doi.org/10.1142/S2010324720500241

W. SKohn, Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett. 76 (1996) 3168, https://doi.org/10.1103/PhysRevLett.76.3168

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996 3865, https://doi.org/10.1103/PhysRevLett.77.3865

S. Y. Savrasov, Program LMTART for electronic structure calculations. Zeitschrift für Kristallographie-Crystalline Materials 220 (2005) 555, https://doi.org/10.1524/zkri.220.5.555.65067

J. P. Perdew, and W. Yue Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B 46 (1992) 12947, https://doi.org/10.1103/PhysRevB.46.12947

P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50 (1994) 17953. https://doi.org/10.1103/PhysRevB.50.17953

F. D. Murnaghan, The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.24

V. G. Tyuterev, and Nathalie Vast, Murnaghan’s equation of state for the electronic ground state energy. Computational materials science 38 (2006) 350, https://doi.org/10.1016/j.commatsci.2005.08.012

K. Benyelloul, and A. Hafid Elastic constants of austenitic stainless steel: Investigation by the first-principles calculations and the artificial neural network approach. Comp. Mat. Sci. 67 (2013) 353, https://doi.org/10.1016/j.commatsci.2012.09.005

Y. Ouyang et al. First-principles calculations of elastic and thermo-physical properties of Al, Mg and rare earth lanthanide elements. Physica B: Condensed Matter 404 (2009) 2299, https://doi.org/10.1016/j.physb.2009.04.032

M. J. Mehl et al., Structural properties of ordered high-meltingtemperature intermetallic alloys from first-principles totalenergy calculations. Phys. Rev. B. 41 (1990) 10311, https://doi.org/10.1103/PhysRevB.41.10311

H. Rached, et al. First-principles calculations of structural, elastic and electronic properties of Ni2MnZ (Z= Al, Ga and In) Heusler alloys. Physica Status Solidi (b) 246 (2009) 1580, https://doi.org/10.1002/pssb.200844400

F. I. Fedoras, Theory of Elastic Waves in Crystals. (1985) 213

M. Born, and K. Huang, Dynamical theory and experiment I. Publishers, Berlin (1982)

W. J. T. L. Voight, Lehrbuch der kristallphysik. Teubner, Leipzig (1928)

A. Reuß, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMMJournal of Applied Mathematics and Mechanics/Zeitschrift fü Angewandte Mathematik und Mechanik 9 (1929) 49, https://doi.org/10.1002/zamm.19290090104

R. Hill, The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A 65 (1952) 349, https://doi.org/10.1088/0370-1298/65/5/307

B. Mayer, et al., Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics 11 (2003) 23, https://doi.org/10.1016/ S0966-9795(02)00127-9

M. Rajagopalan, Full potential linear augmented plane wave study of the elastic properties of XPt3 (X= V, Cr, Mn, Fe, Co, Ni). Physica B: Condensed Matter 405 (2010) 2516, https://doi.org/10.1016/j.physb.2010.02.060

J. M. Haines, and G. Bocquillon. Annu. Rev. Mater. Res 31 (2001) 1

H. Fu, et al. Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Comp. Mat. Sci. 44 (2008) 774, https://doi.org/10.1016/j.commatsci.2008.05.026

I. N. Frantsevich, F. F. Voronov, and S. A. Bokuta. Elastic Constants and Elastic Moduli of Metals and Insulators, ed. IN Frantsevich. (1983)

S. F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954) 823. https://doi.org/10.1080/14786440808520496

Z. E. Biskri, et al. Computational study of structural, elastic and electronic properties of lithium disilicate (Li2Si2O5) glassceramic. Journal of the mechanical behavior of biomedical materials 32 (2014) 345, https://doi.org/10.1016/j.jmbbm.2013.10.029

S. Ouardi, et al. Electronic and crystallographic structure, hard x-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co 2 MnGe. Phys. Rev. B. 84 (2011) 155122. https://doi.org/10.1103/PhysRevB.84.155122

Y.-Z. Zhang et al. Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chemical Society Reviews 44 (2015) 5181, https://doi.org/10.1039/C5CS00174A

O. L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids 24 (1963) 909, https://doi.org/10.1016/0022-3697(63)90067-2

I. Johnston, Solid state physics simulations. Wiley, 1996

R. E. Newnham, Properties of materials: anisotropy, symmetry, structure. Oxford University Press on Demand, 2005

J. Feng, et al. Stability, thermodynamic and mechanical properties of the compounds in the Ag-Sn-O system. Physica B: Condensed Matter 404 (2009) 2461, https://doi.org/10.1016/j.physb.2009.05.004

E. Schreiber, O. L. Anderson and N. Soga, Elastic Constants, and Their Measurements, McGraw-Hill Companies, Inc., New York, 1973

S. Daoud et al. Effect of hydrostatic pressure on the structural, elastic and electronic properties of (B3) boron phosphide. Pramana 79 (2012) 95. https://doi.org/10.1007/s12043-012-0283-8

H. Lin, et al. Nature Mater. 9 (2010) 546

H. Bouafia et al. Insight into elastic anisotropy, mechanical and dynamical stability, electronic properties, bonding and weak interactions analysis of LuAuSn Half-Heusler. Solid State Sciences 118 (2021) 106677, https://doi.org/10.1016/j.solidstatesciences.2021.106677

C. Ambrosch-Draxl, and J. O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method. Computer physics communications 175 (2006) 1, https://doi.org/10.1016/j.cpc.2006.03.005

M. Bendjemai et al. Insight into the role of weak interactions on optoelectronic properties of LiGaTe2-chalcopyrite under pressure effect: DFT-D3, NCI and QTAIM investigations. Physica B: Condensed Matter 599 (2020) 412463, https://doi.org/10.1016/j.physb.2020.412463

B. Sana et al. Study of magnetic and optoelectronic properties of BaCmO3-cubic perovskite after the estimation of Hubbard interaction and Hund’s exchange parameters: GW and DFT+ U investigations. Optik 168 (2018) 196, https://doi.org/10.1016/j.ijleo.2018.04.064

X-G., Wang et al. The hematite (α − F e2O3)(0001) surface: Evidence for domains of distinct chemistry. Phys. Rev. Let. 81 (1998) 1038. https://doi.org/10.1103/PhysRevLett.81.1038

A. Delin, et al. Optical properties of the group-IVB refractory metal compounds. Phys. Rev. B. 54 (1996) 1673. https://doi.org/10.1103/PhysRevB.54.1673

Y. U. Peter, and M. Cardona, Fundamentals of semiconductors: physics and materials properties. Springer Science and Business Media, 2010.

B. S. Mendoza, and W. Luis Mochán. Ab initio theory of the Drude plasma frequency. JOSA B 38 (2021) 1918, https://doi.org/10.1364/JOSAB.416741

Downloads

Published

2023-09-01

How to Cite

[1]
A. BOUAZZA, M. Khirat, M. Larbi, N. Bettahar, and D. Rached, “Structural, mechanical, electronic, thermal, and optical properties of the inverse-Heusler compounds X2RuPb(X = La, Sc): A first-principles investigation”, Rev. Mex. Fís., vol. 69, no. 5 Sep-Oct, pp. 050501 1–, Sep. 2023.