Electromagnetic curves and Rytov’s law in the optical fiber with Maxwellian evolution via alternative moving frame


  • Semra Nurkan Usak University
  • Hazal Ceyhan Ankara University
  • Zehra Özdemir Amasya University
  • İsmail Gök Ankara University




Applications to physics, Magnetic flows, Vector fields, Ordinary differential equations, Electromagnetic theory, Maxwell’s equation


In this study, we research the behavior of a linearly-polarized light wave in optical fiber and the rotation of the polarization plane through the alternative moving frame { N,C,W } in Minkowski 3-space. Then Berry’s phase equations are discussed for electromagnetic curves in the { C } and { W } directions along an optic fiber via alternative moving frame in Minkowski 3-space. Moreover, electromagnetic curve’s { C } and { W } Rytov parallel transportation laws are defined. Finally, we examine the electromagnetic curve’s Maxwellian evolution by Maxwell’s equation.


V. V. Vladimirski, Dokl. Akad. Nauk. SSSR 31 (1941) 222; reprinted in B. Markovski, S.I. Vinitsky (eds) Topological Phases in Quantum Theory, World Scientific, Singapore (1989).

Y. A. Kravtsov and Y. I. Orlov, Geometrical Optics of Inhomogeneous Media, (Springer-Verlag, Berlin, 1990).

E. M. Frins, W. Dultz, Rotation of the polarization plane in optical fibers, J. Lightwave Technol. 15 (1997) 144. https://doi.org/10.1109/50.552122

J .N. Ross, The rotation of the polarization in low briefrigence monomode optical fibres due to geometric effects, Opt. Quantum Electron. 16 (1984) 455. https://doi.org/10.1007/BF00619638

M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. London A. 392 (1984) 45. https://doi.org/10.1098/rspa.1984.0023

M. Kugler, S. Shtrikman, Berry’s phase, locally inertial frames, and classical analogues, Phys. Rev. D. 37 (1988) 934. https://doi.org/10.1103/physrevd.37.934

R. Dandoloff, Berry’s phase and Fermi–Walker parallel transport, Phys. Lett. A. 139 (1989) 19. https://doi.org/10.1016/0375-9601(89)90599-9

A. Comtet, On the Landau Hall levels on the hyperbolic plane, Ann. Phys. 173 (1987) 185. https://doi.org/10.1016/0003-4916(87)90098-4

M. Barros, A. Romero, J. L. Cabrerizo, M. Fernández, The Gauss-Landau-Hall problem on Riemanniansurfaces. J. Math. Phys. 46 (2005) 112905, https://doi.org/10.1063/1.2136215

M. Barros, J. L. Cabrerizo, M. Fernández, A. Romero, Magnetic vortex flament flows, J. Math. Phys. 48 (2007) 082904, https://doi.org/10.1063/1.2767535

T. Adachi, Kahler magnetic on a complex projective space, Proc. Jpn. Acad. Ser. A Math. Sci. 70 (1994) 12. https://doi.org/10.3792/pjaa.70.12

T. Adachi, Kahler magnetic flow for a manifold of constant holomorphic sectional curvature, Tokyo J. Math. 18 (1995) 473. https://doi.org/10.3836/tjm/1270043477

T. Körpınar, R.C. Demirkol, Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D semi-Riemannian manifold. Journal of Modern Optics, 66 (2019) 857. https://doi.org/10.1080/09500340.2019.1579930

T. Sunada, Magnetic flows on a Riemann surface, In Proceedings of the KAIST Mathematics Workshop:Analysis and Geometry, Taejeon, Korea, 8 (1993) 93. https://cir.nii.ac.jp/crid/1574231873874473728

J. L Cabrerizo, M. Fernández and J. S. Gómez, The contact magnetic flow in 3D Sasakian manifolds, J. Phys. A: Math. Theor. 42 (2009) 195201. https://doi.org/10.1088/1751-8113/42/19/195201

M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (1997) 1503. https://www.jstor.org/stable/2162098

Z. Bozkurt, ˙I. Gök, Y. Yaylı F. N. Ekmekci, A new approach for magnetic curves in 3D Riemannian manifolds, J. Math. Phys. 55 (2014) 053501. https://doi.org/10.1063/1.4870583

Z. Özdemir, A New Calculus for the Treatment of Rytov’s Law in the Optical Fiber, Optik 216 (2020) 164892, https://doi.org/10.1016/j.ijleo.2020.164892

H. Ceyhan, Z. Özdemir, ˙I. Gök, F. N. Ekmekci, Electromagnetic Curves and Rotation of the Polarization Plane through Alternative Moving Frame, European Physical Journal Plus 135 (2020) 1. https://doi.org/10.1140/epjp/s13360-020-00881-z

J.L. Cabrerizo, Magnetic fields in 2D and 3D sphere. J. Nonlinear Math. Phys. 20 (2013) 440 https://doi.org/10.1080/14029251.2013.855052

O. Bjorgum G. Thore, On Beltrami vector fields and flows, Part 1. Universitet I Bergen, Arbok (1951), Naturvitenskapelig rekke nr. 1.

A. W. Marris, Addendum to, Vector fields of solenoidal vectorline rotation, A class of permanent flows of solenoidal vectorline rotation. Arch. Rational Mech. Anal. 27 (1967) 195

N. E. Gurbuz, The pseudo-null geometric phase along optical fiber, Int. J. of Geometric Methods in Modern Phys. 18 (2021) https://doi.org/10.1142/S0219887821502303

T. Körpınar, R. C. Demirkol, Z. Körpinar, V. Asil, Maxwellian evolution equations along the uniform optical fiber in Minkowski space, Rev. Mex. Fis. 66 (2020) 431, https://doi.org/10.31349/revmexfis.66.431

F. Ates¸, E. Kocakus¸aklı, ˙I. Gök, F. N. Ekmekci, Tubular Surfaces Formed by Semi-spherical Indicatrices in E3 1, Mediterr. J. Math., 17 (2020) 127, https://doi.org/10.1007/s00009-020-01561-z

R. Betchov, On the curvature and torsion of an isolated vortex filament, Journal of Fluid Mechanics, 22 (1965) 471 https://doi.org/10.1017/S0022112065000915

L. S. Da Rios, Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque, Rend, Circ. Matem. Palermo, 22 (1906) 117 https://doi.org/10.1007/BF03018608

W. K. Schief, Hidden integrability in ideal magnetohydrodynamics: The Pohlmeyer-Lund-Regge Model, Phys. of Plasmas, 10 (2003) 2677 https://doi.org/10.1063/1.1577347

W. K. Schief, C. Rogers, The Da Rios system under a geometric constraint: the Gilbarg problem, Jour. of Geometry and Physics, 54 (2005) 286 https://doi.org/10.1016/j.geomphys.2004.10.001

H. Hasimoto, A soliton on a vortex filament, Jour. of Fluid Mech., 51 (1972) 477 https://doi.org/10.1017/S0022112072002307

A. Mukhopadhyay, V. Vyas, P. Panigrahi, Rogue waves and breathers in Heisenberg spin chain, Eur. Phys. J. B 88 (2015) 188 https://doi.org/10.1140/epjb/e2015-60229-8

V. Banica, E. Miot, Evolution, interaction and collisions of vortex filaments, Differential Integral Equations, 26 (3/4) (2013) 355 https://doi.org/10.48550/arXiv.1202.2580

M. Grbovic, E. Nesovic, On Backlund transformation and vortex filament equation for pseudo-null curves in Minkowski 3- space, Int. J. Geom. Methods Mod. Phys. 13 (2016) 1650077 https://doi.org/10.1142/S0219887816500778

J. Amor, A. Gimenez, P. Lucas, Integrability aspects of the vortex filaments equation for pseudo-null curves, Int. J. Geom. Methods Mod. Phys. 14 (2017) 1750090, https://doi.org/10.1142/S0219887817500906

M. Hesami, M. Avazpour, M. M. Méndez Otero, J. J. A. Rodríguez, Evolution of rectangular and triangular initial beam profiles in positive Kerr local medium, Supl. Rev. Mex. Fis. 1 (2020) 13 https://doi.org/10.31349/SuplRevMexFis.1.13

M. Hesami, M. Avazpour, M. M. Méndez Otero, J. Arriaga, M. D. I. Castillo, S. C. Cerda, Generation of bright spatial quasi-solitons by arbitrary initial beam profiles in local and nonlocal (1+1)-dimensional nonlinear media, Optik 202 (2020) 163504 https://doi.org/10.1016/j.ijleo.2019.163504

M. Hesami, M. Avazpour, M. D. I. Castillo, H. Nadgaran, E. Alvarado-Méndez, Observation of a different type of splitting solitons induced by interaction of second order spatial solitons, Optik 245 (2021) 167647 https://doi.org/10.1016/j.ijleo.2021.167647

N. Gürbüz, Intrinsic geometry of the NLS equation and heat system in 3-dimensional Minkowski space, Adv. Studies Theor. Phys. 4 (2010) 557 https://m-hikari.com/astp/astp2010/astp9-12-2010/gurbuzASTP9-12-2010.pdf

M. Ungs, L. P. and A. Gize, The Theory of Quantum Torus Knots: Its Foundation in Differential Geometry- Volume II, (2020) https://books.google.com.tr/books?id= XtuEzQEACAAJ

H. Ceyhan, Z. Özdemir, ˙I. Gök, F. N. Ekmekci, A Geometric Interpretation of Polarized Light and Electromagnetic Curves Along an Optical Fiber with Surface Kinematics, Mediterr. J. Math. 19 (2022) 265. https://doi.org/10.1007/s00009-022-02160-w




How to Cite

S. Nurkan, H. Ceyhan, Z. Özdemir, and İsmail Gök, “Electromagnetic curves and Rytov’s law in the optical fiber with Maxwellian evolution via alternative moving frame”, Rev. Mex. Fís., vol. 69, no. 6 Nov-Dec, pp. 061301 1–, Nov. 2023.