First-principle study origin of ferromagnetism in non-magnetic perovskite BaSnO3 doped with 2p-X (X=C, N)

Authors

  • A. Guendouz University of Oran 1 Ahmed Ben Bella
  • K. Driss-Khodja University of Oran 1 Ahmed Ben Bella
  • B. Amrani University of Oran 1 Ahmed Ben Bella

DOI:

https://doi.org/10.31349/RevMexFis.70.061602

Keywords:

BaSnO3, First principles calculations, Half- Metallic, Magnetic properties

Abstract

In this study, our goal is to analyze the origin of magnetization in non magnetic cubic structure perovskite BaSnO3 doped with 2p-X (X=C, N) using the full potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT).  For the exchange and correlation potential we have applied the generalized gradient approximation (GGA) and the GGA plus-modified Becke-Johnson potential (mBJ-GGA).   The results show that BaSnO3 doped with C then with N and finally with C and N exhibit half-metallic ferromagnetism behavior with the integer magnetic moment of 1, 2 and 3 μB per cell respectively. The origin of the ferromagnetism that occurs within these compounds is mainly caused by the p-p hybridization between 2p-impurities and its neighboring oxygen atoms. These results allowed to conclude that doped perovskite could provide a new type of materials, called half-metallic for future spintronic devices.

References

R.H.J. Mitchell, Perovskites: modern and ancient, (2002). https://doi.org/10.1107/S0108768102020220

C.N.R. Rao, B. Raveau, Colossal magnetoresistance, charge ordering and related properties of manganese oxides, World Scientific 1998. https://doi.org/10.1142/3605

Y.J.P.A. Tokura, Colossal Magnetoresistive Oxides, Gordon and Breach Science, (2000). https://doi.org/10.1201/9781482287493

G. Larramona, C. Gutiérrez, I. Pereira, M.R. Nunes, F.M.A. da Costa, Characterization of the mixed perovskite BaSn1-SbO3 by electrolyte electroreflectance, diffuse reflectance, and Xray photoelectron spectroscopy, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 85 (1989) 907, https://doi.org/10.1039/F19898500907

H. Mizoguchi, H.W. Eng, P.M. Woodward, Probing the Electronic Structures of Ternary Perovskite and Pyrochlore Oxides Containing Sn4+ or Sb5+, Inorganic Chemistry 43 (2004) 1667, https://doi.org/10.1021/ic034551c

H. Mizoguchi, P.M. Woodward, C.-H. Park, D.A. Keszler, Strong Near-Infrared Luminescence in BaSnO3, Journal of the American Chemical Society 126 (2004) 9796, https://doi.org/10.1021/ja048866i

X. Luo, Y.S. Oh, A. Sirenko, P. Gao, T.A. Tyson, K. Char, S.-W. Cheong, High carrier mobility in transparent Ba1−xLa1−xSnO3 crystals with a wide band gap, Applied Physics Letters 100 (2012), https://doi.org/10.1063/1.4709415

H.J. Kim, U. Kim, Kim, T.H. Kim, H.S. Mun, B.-G. Jeon, K.T. Hong, W.-J. Lee, C. Ju, K.H. Kim, K. Char, High Mobility in a Stable Transparent Perovskite Oxide, Applied Physics Express 5 (2012) 061102, https://doi.org/10.1143/APEX.5.061102

S. James Allen, S. Raghavan, T. Schumann, K.-M. Law, S. Stemmer, Conduction band edge effective mass of Ladoped BaSnO3, Applied Physics Letters 108 (2016). DOI: 10.1063/1.4954671

M.G. Smith, J.B. Goodenough, A. Manthiram, R.D. Taylor, W. Peng, and C.W. Kimball, Tin and antimony valence states in BaSn0.85Sb0.1503, Journal of Solid State Chemistry 98 (1992) 181, https://doi.org/10.1016/0022-4596(92)90084-9

B. Ostrick, M. Fleischer, U. Lampe, H. Meixner, Preparation of stoichiometric barium stannate thin films: Hall measurements and gas sensitivities, Sensors and Actuators B: Chemical 44 (1997) 601, https://doi.org/10.1016/S0925-4005(97)00141-X

P. Rajasekaran, Y. Kumaki, M. Arivanandhan, M.M.S. Ibrahim Khaleeullah, R. Jayavel, H. Nakatsugawa, Y. Hayakawa, M. Shimomura, Effect of Sb substitution on structural, morphological and electrical properties of BaSnO3 for thermoelectric application, Physica B: Condensed Matter 597 (2020) 412387, https://doi.org/10.1016/j.physb.2020.412387

A. Bouhemadou, K. Haddadi, Structural, elastic, electronic and thermal properties of the cubic perovskite-type BaSnO3, Solid State Sciences 12 (2010) 630, https://doi.org/10.1016/j.solidstatesciences.2010.01.020

S. Soleimanpour, F. Kanjouri, First principle study of electronic and optical properties of the cubic perovskite BaSnO3, Physica B: Condensed Matter 432 (2014) 16, DOI: https://doi.org/10.1016/j.physb.2013.09.004

S. Chahib, D. Fasquelle, G. Leroy, Density functional theory study of structural, electronic and optical properties of cobalt-doped BaSnO3, Materials Science in Semiconductor Processing 137 (2022) 106220. DOI: https://doi.org/10.1016/j.mssp.2021.106220

P. Rajasekaran et al., The effect of rare earth ions on structural, morphological and thermoelectric properties of nanostructured tin oxide based perovskite materials, Materials Research Express 4 (2017) 115024, https://doi.org/10.1088/2053-1591/aa97a1

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kuasnicke, J. Luitz, Introduction to WIEN2K, An Augmented plane wane plus local orbitals program for calculating crystal properties (Vienna university of technology, Vienna, Austria, 2001) (2001)

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865

F. Tran, P. Blaha, K. Schwarz, P. Novak, Hybrid exchange correlation energy functionals for strongly correlated electrons: Applications to transition-metal monoxides, Physical Review B 74 (2006) 155108, https://doi.org/10.1103/PhysRevB.74.155108

V. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissensenschaffen, 14 (1926) 477, DOI: https://doi.org/10.1007/BF01507527

R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallographica Section B 25 (1969) 925, https://doi.org/10.1107/S0567740869003220

T. Maekawa, K. Kurosaki, S. Yamanaka, Thermal and mechanical properties of polycrystalline BaSnO3, Journal of Alloys and Compounds, 416 (2006) 214, https://doi.org/10.1016/j.jallcom.2005.08.032

F.D. Murnaghan, The Compressibility of Media under Extreme Pressures, 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.244

E. Bévillon, A. Chesnaud, Y. Wang, G. Dezanneau, G. Geneste, Theoretical and experimental study of the structural, dynamical and dielectric properties of perovskite BaSnO3, Journal of Physics: Condensed Matter 20 (2008) 145217, https://doi.org/10.1088/0953-8984/20/14/145217

H.M. Elizabeth, J.P. Attfield, A.T.R. Simon, Cation-size control of structural phase transitions in tin perovskites, Journal of Physics: Condensed Matter 15 (2003) 8315, https://doi.org/10.1088/0953-8984/15/49/010

E. Moreira et al., Structural and electronic properties of SrxBa1−xSnO3 from first principles calculations, Journal of Solid State Chemistry 187 (2012) 186, https://doi.org/10.1016/j.jssc.2011.12.027

J. Tang, J. Ye, W. Zhang, Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts, J. Materials Research 22 (2007) 1859, https://doi.org/10.1557/jmr.2007.0259

M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, B.M. Klein, Structural properties of ordered high-meltingtemperature intermetallic alloys from first-principles totalenergy calculations, Physical Review B 41 (1990) 10311, https://doi.org/10.1103/PhysRevB.41.10311

M.J. Mehl, B.M. Klein, D.A. Papaconstantopoulos, Intermetallic compounds: principle and practice, Principles 1 (1995) 195

M. Born, K. Huang, Dynamical Theory Of Crystal Lattices, Oxford University Press 1996

R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proceedings of the Physical Society. Section A 65 (1952) 349. https://doi.org/10.1088/0370-1298/65/5/307

W. Voigt, Lehrbuch der kristallphysik: Teubner-Leipzig [M], Macmillan New York, 1928

A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitatsbedingung Einkristalle, 9 (1929) 49, https://doi.org/10.1002/zamm.19290090104

S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954) 823-843 https://doi.org/10.1080/14786440808520496.

I.N. Frantsevich, F.F. Voronov, S.A. Bakuta, Elastic constants and elastic moduli of metals and nonmetals(In Russian), Kiev, Izdatel’stvo Naukova Dumka, 1982, (1982) 288

D.J. Singh, D.A. Papaconstantopoulos, J.P. Julien, F. CyrotLackmann, Electronic structure of Ba(Sn,Sb)O3: Absence of superconductivity, Physical Review B 44 (1991) 9519, https://doi.org/10.1103/PhysRevB.44.9519

S. Sanvito, P. Ordejón, N.A. Hill, First-principles study of the origin and nature of ferromagnetism in Ga1−xMnxAs, Phys. Rev. B 63 (2001) 165206, https://doi.org/10.1103/PhysRevB.63.165206

H. Raebiger, A. Ayuela, R.M. Nieminen, Intrinsic hole localization mechanism in magnetic semiconductors, Journal of Physics: Condensed Matter 16 (2004) L457. https://doi.org/10.1088/0953-8984/16/41/L05

T. Cao, Z. Li, S.G. Louie, Tunable Magnetism and HalfMetallicity in Hole-Doped Monolayer GaSe, Physical Review Letters 114 (2015) 236602. https://doi.org/10.1103/PhysRevLett.114.23660

Downloads

Published

2024-11-01

How to Cite

[1]
atika guendouz, K. Driss-Khodja, and B. Amrani, “ First-principle study origin of ferromagnetism in non-magnetic perovskite BaSnO3 doped with 2p-X (X=C, N)”, Rev. Mex. Fís., vol. 70, no. 6 Nov-Dec, pp. 061602 1–, Nov. 2024.