Interferometer study of radial and axial density evolution and temperature in N2 gas subjected to negative and positive corona discharges

Authors

  • M. Lemerini University of Tlemcen
  • A. K. Ferouani University of Tlemcen
  • M. Sahlaou University of Tlemcen

DOI:

https://doi.org/10.31349/RevMexFis.70.021302

Keywords:

Corona discharge; Pearce method; Abel inversion; Gladstone−Dale equation; Mach−Zehnder interferometer

Abstract

In the present paper, we propose to make an optical diagnosis by laser interferometry to determine experimentally the density of neutral particles in a coronal discharge bathing in a gaseous medium N2. We are particularly interested in the measurement of variation of the optical path and therefore of the index of refraction which allows us to highlight the variation of the density of the neutrals in the discharge, and using a computer treatment (Pearce method) the refractive index of the medium is calculated to determine the spatial distribution of density and temperature (radial and axial) at the core of the corona discharge in two different situations (positive and negative). This optical diagnosis also allowed us to quantitatively determine the phenomenon of depopulation of neutral particles. These quantitative and experimental results are interesting because they allow a good correlation between the theoretical results obtained so far

References

A.K. Ferouani, M. Lemerini and S. Belhour, Numerical modelling of nitrogen thermal effects produced by the negative dc corona discharge, Plasma Science and Technology, 12 (2010) 208. https://doi:10.1088/1009-0630/12/2/15

A. K. Ferouani, M. Lemerini, L. Merad et al., Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field, Plasma Science and Technology, 17 (2015) 469. https://doi:10.1088/1009-0630/17/6/06

A. Mizuno, Electrostatic precipitation IEEE Transactions on dielectrics and electrical insulation 7 (2000) 615. https://doi:10.1109/94.879357

S. S. Grossel, Book review: Electrostatics: Principles, Problems and Applications,: J. A. Cross Adam Hilger, Bristol, U.K., 2nd Edition, 1987, pp. 491, ISBN 0 85274 599 3, J. Loss Prevention in the Process Industries 2 (1989) 56, https://doi.org/10.1016/0950-4230(89)87013-5

C. Soria, F. Pontiga and A. Castellanos, Plasma chemical and electrical modelling of a negative DC corona in pure oxygen, Plasma Sources Science and Technology, 13 (2003) 95. https://doi:10.1088/0963-0252/13/1/012

G. L. Rogoff, Gas Heating Effects in the Constriction of a High−Pressure Glow Discharge Column, The Physics of Fluids 15 (1972) 1931, https://doi.org/10.1063/1.1693805

R. Morrow, Theory of negative corona in oxygen, Phys. Rev. A 32 (1985) 1799, https://doi.org/10.1103/PhysRevA.32.1799

M. Lemerini, Modelisation et simulation numerique de l’empreinte thermique d’une decharge pointe-plan dans l’air. Application a l’etude de la dynamique des neutres. Tesis de doctorado, University Tlemcen-Algeria, (2001)

I. S. Medjahdi, A. K. Ferouani, Numerical Modeling of Impact Effect of Chemical Reactions on Nitrogen Oxide Conversion in N2/O2 Mixtures Under Various X%O2 Concentrations, IEEE Transactions on Plasma Science, 49 (2021) 1181, https://doi.org/10.1109/TPS.2021.3059729

F. Boudaoud and M. Lemerini, Using a Mach-Zehnder interferometer to deduce nitrogen density mapping, Chinese Physics B, 24 (2015) 075205, https://doi.org/10.1088/1674-1056/24/7/075205

D. Benyahia and M. Lemerini, Interferometer method using abel inversion to deduce a mapping of helium gas density and temperature, Microwave and Optical Technology Letters 58 (2016) 393, https://doi.org/10.1002/mop.29578

B. H. Lee et al., Interferometric fiber optic sensors, sensors, 12 (2012) 2467, https://doi.org/10.3390/s120302467

P. Lu, L. Men, K. Sooleyet and Q. Chen, Tapered fiber Mach−Zehnder interferometer for simultaneous measurement of refractive index and temperature, Applied Physics Letters 94 (2009) 131110, https://doi.org/10.1063/1.3115029

P. V. Farrell, G. S. Springer and C. M. Vest, Heterodyne holographic interferometry: concentration and temperature measurements in gas mixtures, Applied Optics 21 (1982) 1624, https://doi.org/10.1364/AO.21.001624

J. T. Sheridan and R. Patten, Holographic interferometry and the fractional Fourier transformation, Optics letters, 25 (2000) 448, https://doi.org/10.1364/OL.25.000448

C. M. Vest, Holographic Interferometry, (New York: Wiley, 1979)

G. H. Kaufmann and C. M. Vest, Thermal waves visualized by holographic interferometry, Applied optics, 26 (1987) 2799, https://doi.org/10.1364/AO.26.002799.

P. Hariharan, Basics of interferometry, (Second Edition: Elsevier, 2010)

Downloads

Published

2024-03-01

How to Cite

[1]
LEMERINI Mostefa, A. K. Ferouani, and M. Sahlaou, “Interferometer study of radial and axial density evolution and temperature in N2 gas subjected to negative and positive corona discharges”, Rev. Mex. Fís., vol. 70, no. 2 Mar-Apr, pp. 021302 1–, Mar. 2024.