Pseudoscalar current and covariance with the light-front approach


  • Jurandi Leão IFSP and LFTC, UCS/UNICID
  • Joao de Mello LFTC - Univeridade Cruzeiro do Sul / UNICID



Pion; light-front; quark model; electromagnetic current; electromagnetic form factor


Quantum Field Theory (QFT) is used to describe the physics of particles in terms of their fundamental constituents. The Light-Front Field Theory (LFFT), introduced by Paul Dirac in 1949 [1], is an alternative approach to solve some of the problems that arise in quantum field theory. The LFFT is similar to the Equal Time Quantum Field Theory (EQT), however, some particularities are not, such as the loss of covariance in the light-front. Pion electromagnetic form factor is studied in this work at lower and higher momentum transfer regions to explore the constituent quark models and the differences among these and other models. The electromagnetic current is calculated with both the “plus” and “minus” components in the light-front approach. The results are compared with other models, as well as with experimental data.


P. A. M. Dirac, Forms of Relativistic Dynamics, Rev. Mod. Phys. 21 (1949) 392,

S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301 (1998) 299,

M. Lacombe et al., Testing the quark cluster model in nucleonnucleon scattering, Phys. Rev. C 65 (2002) 034004,

A. Harindranath, Light front quantum chromodynamics: Towards phenomenology, Pramana 55 (2000) 241,

C. Itzykson and J.-B. Zuber, Quantum field theory (Courier Corporation, 2012), McGraw-Hill, New York, International Series In Pure and Applied Physics, ISBN 978-0-486-44568-7

R. J. Perry, A. Harindranath, and K. G. Wilson, Light front Tamm-Dancoff field theory, Phys. Rev. Lett. 65 (1990) 2959,

M. V. Terentev, On the Structure of Wave Functions of Mesons as Bound States of Relativistic Quarks, Sov. J. Nucl. Phys. 24 (1976) 106

W. R. B. de Araujo, J. P. B. C. de Melo, and T. Frederico, Faddeev null plane model of the nucleon, Phys. Rev. C 52 (1995) 2733,

Z. Dziembowski and L. Mankiewicz, LIGHT MESON DISTRIBUTION AMPLITUDE: A SIMPLE RELATIVISTIC MODEL, Phys. Rev. Lett. 58 (1987) 2175,

F. Cardarelli et al., Nucleon and pion electromagnetic formfactors in a light front constituent quark model, Phys. Lett. B 357 (1995) 267,

F. Cardarelli et al., Charge form-factor of pi and K mesons, Phys. Rev. D 53 (1996) 6682,

A. F. Krutov and V. E. Troitsky, On a possible estimation of the constituent quark parameters from Jefferson Lab experiments on pion form-factor, Eur. Phys. J. C 20 (2001) 71,

J. P. C. B. de Melo, H. W. L. Naus, and T. Frederico, Pion electromagnetic current in the light cone formalism, Phys. Rev. C 59 (1999) 2278,

A. F. Krutov, V. E. Troitsky, and N. A. Tsirova, Nonperturbative relativistic approach to pion form factor versus JLab experiments, Phys. Rev. C 80 (2009) 055210,

D. Melikhov and S. Simula, Electromagnetic form-factors in the light front formalism and the Feynman triangle diagram: Spin 0 and spin 1 two fermion systems, Phys. Rev. D 65 (2002) 094043,

J. P. B. C. de Melo et al., Electromagnetic form-factor of the pion in the space and time - like regions within the front form dynamics, Phys. Lett. B 581 (2004) 75,

H.-Y. Cheng, C.-K. Chua, and C.-W. Hwang, Covariant light front approach for s wave and p wave mesons: Its application to decay constants and form-factors, Phys. Rev. D 69 (2004) 074025,

T. Huang and X.-G. Wu, A Model for the twist-3 wave function of the pion and its contribution to the pion form-factor, Phys. Rev. D 70 (2004) 093013,

V. V. Braguta and A. I. Onishchenko, Pion form-factor and QCD sum rules: Case of axial current, Phys. Lett. B 591 (2004) 267,

L. A. M. Salcedo et al., Weak decay constant of pseudscalar meson in a QCD inspired model, Braz. J. Phys. 34 (2004) 297,

L. A. M. Salcedo et al., Electromagnetic structure and weak decay of pseudoscalar mesons in a light-front QCD-inspired model, Eur. Phys. J. A 27 (2006) 213,

V. A. Karmanov, J. F. Mathiot, and A. V. Smirnov, Regularization of fermion self-energy and electromagnetic vertex in Yukawa model within light-front dynamics, Phys. Rev. D 75 (2007) 045012,

J. P. B. C. de Melo et al., Pair term in the electromagnetic current within the front form dynamics: Spin-0 case, Nucl. Phys. A 707 (2002) 399,

B. L. G. Bakker, H.-M. Choi, and C.-R. Ji, Regularizing the fermion loop divergencies in the light front meson currents, Phys. Rev. D 63 (2001) 074014,

L. S. Kisslinger, H.-M. Choi, and C.-R. Ji, Pion form-factor and quark mass evolution in a light front Bethe-Salpeter model, Phys. Rev. D 63 (2001) 113005,

J. P. B. C. de Melo et al., Space-like and time-like pion electromagnetic form-factor and Fock state components within the light-front dynamics, Phys. Rev. D 73 (2006) 074013,

E. P. Biernat et al., Pion electromagnetic form factor in the Covariant Spectator Theory, Phys. Rev. D 89 (2014) 016006,

G. H. S. Yabusaki et al., Pseudoscalar mesons with symmetric bound state vertex functions on the light front, Phys. Rev. D 92 (2015) 034017,

T. Horn and C. D. Roberts, The pion: an enigma within the Standard Model, J. Phys. G 43 (2016) 073001,

L. Adhikari et al., Form Factors and Generalized Parton Distributions in Basis Light-Front Quantization, Phys. Rev. C 93 (2016) 055202,

J. P. B. C. de Melo and T. Frederico, Covariant and light front approaches to the rho meson electromagnetic form-factors, Phys. Rev. C 55 (1997) 2043,

J. P. B. C. de Melo et al., Covariance of light front models: Pair current, Nucl. Phys. A 660 (1999) 219,

F. M. Lev, E. Pace, and G. Salme, Deuteron magnetic and quadrupole moments with a Poincare covariant current operator in the front form dynamics, Phys. Rev. Lett. 83 (1999) 5250,

F. M. Lev, E. Pace, and G. Salme, Poincare covariant current operator and elastic electron deuteron scattering in the front form Hamiltonian dynamics, Phys. Rev. C 62 (2000) 064004,

W. Jaus, Consistent treatment of spin 1 mesons in the light front quark model, Phys. Rev. D 67 (2003) 094010,

J. P. B. C. de Melo et al., Frame dependence of the pair contribution to the pion electromagnetic form-factor in a light front approach, Braz. J. Phys. 33 (2003) 301,

T. M. Aliev and M. Savci, Electromagnetic form factors of the rho meson in light cone QCD sum rules, Phys. Rev. D 70 (2004) 094007,

V. V. Braguta and A. I. Onishchenko, rho meson form-factors and QCD sum rules, Phys. Rev. D 70 (2004) 033001,

H. W. L. Naus, J. P. B. C. de Melo, and T. Frederico, WardTakahashi identity on the light front, Few Body Syst. 24 (1998) 99,

B. L. G. Bakker, H.-M. Choi, and C.-R. Ji, Transition formfactors between pseudoscalar and vector mesons in light front dynamics, Phys. Rev. D 67 (2003) 113007,

H.-M. Choi and C.-R. Ji, Electromagnetic structure of the rho meson in the light front quark model, Phys. Rev. D 70 (2004) 053015,

B. L. G. Bakker, H.-M. Choi, and C.-R. Ji, The Vector meson form-factor analysis in light front dynamics, Phys. Rev. D 65 (2002) 116001,

J. P. B. C. de Melo and T. Frederico, Light-Front projection of spin-1 electromagnetic current and zero-modes, Phys. Lett. B 708 (2012) 87,

C. S. Mello et al., Light-Front Spin-1 Model: Parameters Dependence, Few Body Syst. 56 (2015) 509,

S. R. Amendolia et al., A Measurement of the Pion Charge Radius, Phys. Lett. B 146 (1984) 116,

S. R. Amendolia et al., A Measurement of the Kaon Charge Radius, Phys. Lett. B 178 (1986) 435,

R. Baldini et al., Nucleon timelike form-factors below the N anti-N threshold, Eur. Phys. J. C 11 (1999) 709,

J. Volmer et al., Measurement of the Charged Pion Electromagnetic Form-Factor, Phys. Rev. Lett. 86 (2001) 1713,

H. P. Blok, G. M. Huber, and D. J. Mack, The Pion form-factor, In Exclusive Processes at High Momentum Transfer (2002) pp. 306-312

T. Horn et al., Determination of the Charged Pion Form Factor at Q**2 = 1.60 and 2.45-(GeV/c)**2, Phys. Rev. Lett. 97 (2006) 192001,

V. Tadevosyan et al., Determination of the pion charge form-factor for Q**2 = 0.60-GeV**2 - 1.60-GeV**2, Phys. Rev. C 75 (2007) 055205,

C. D. Roberts, Electromagnetic pion form-factor and neutral pion decay width, Nucl. Phys. A 605 (1996) 475,

F. T. Hawes and M. A. Pichowsky, Electromagnetic formfactors of light vector mesons, Phys. Rev. C 59 (1999) 1743,

P. Maris and P. C. Tandy, Electromagnetic transition form-factors of light mesons, Phys. Rev. C 65 (2002) 045211,

F. Carvalho et al., Meson loop effects on the pion electromagnetic form-factor, Phys. Rev. C 69 (2004) 065202,

B. Desplanques, Nucleon and pion form-factors in different forms of relativistic quantum mechanics, Int. J. Mod. Phys. A 20 (2005) 1601,

B. Desplanques, RQM description of the charge form factor of the pion and its asymptotic behavior, Eur. Phys. J. A 42 (2009) 219,

S. Noguera, Non local Lagrangians. (I): The Pion, Int. J. Mod. Phys. E 16 (2007) 97,

E. Santopinto, An Interacting quark-diquark model of baryons, Phys. Rev. C 72 (2005) 022201,

M. M. Giannini, E. Santopinto, and A. Vassallo, A New application of the Gursey and Radicati mass formula, Eur. Phys. J. A 25 (2005) 241,

E. Tomasi-Gustafsson and G. I. Gakh, Asymptotic behavior of nucleon electromagnetic form-factors in time-like region, Eur. Phys. J. A 26 (2005) 285,

E. Tomasi-Gustafsson et al., Nucleon electromagnetic formfactors and polarization observables in space-like and time-like regions, Eur. Phys. J. A 24 (2005) 419,

V. A. Nesterenko and A. V. Radyushkin, Sum Rules and Pion Form-Factor in QCD, Phys. Lett. B 115 (1982) 410,

L. X. Gutierrez-Guerrero et al., Pion form factor from a contact interaction, Phys. Rev. C 81 (2010) 065202,

L. Chang et al., Pion electromagnetic form factor at spacelike momenta, Phys. Rev. Lett. 111 (2013) 141802,

K. Raya et al., Structure of the neutral pion and its electromagnetic transition form factor, Phys. Rev. D 93 (2016) 074017,

K. Raya, A. Bashir, and P. Roig, Contribution of neutral pseudoscalar mesons to aHLbL µ within a Schwinger-Dyson equations approach to QCD, Phys. Rev. D 101 (2020) 074021, 101.074021

S. Dalley, Impact parameter dependent quark distribution of the pion, Phys. Lett. B 570 (2003) 191,

N. M. Kroll, T. D. Lee, and B. Zumino, Neutral Vector Mesons and the Hadronic Electromagnetic Current, Phys. Rev. 157 (1967) 1376,

G. Krein, A. W. Thomas, and A. G. Williams, Charge symmetry breaking, rho - omega mixing, and the quark propagator, Phys. Lett. B 317 (1993) 293,

H. L. L. Roberts et al., pi- and rho-mesons, and their diquark partners, from a contact interaction, Phys. Rev. C 83 (2011) 065206,

T. Frederico and G. A. Miller, Null plane phenomenology for the pion decay constant and radius, Phys. Rev. D 45 (1992) 4207,

E. O. da Silva et al., Pion and kaon elastic form factors in a refined light-front model, Phys. Rev. C 86 (2012) 038202,

J. P. B. C. de Melo et al., Pairs in the light front and covariance, Nucl. Phys. A 631 (1998) 574C,

P. Zyla et al., Review of Particle Physics, PTEP 2020 (2020) 083C01,

J. J. Sakurai, Theory of strong interactions, Annals Phys. 11 (1960) 1, 0003-4916(60)90126-3

R. P. Feynman, Photon-hadron interactions, Editorial Addison Wesley Publishing Company, (1973)

J. P. B. C. de Melo et al., The pion electromagnetic formfactor in a QCD-inspired model, Few Body Syst. 36 (2005) 189,

G. P. Lepage and S. J. Brodsky, Exclusive Processes in Perturbative Quantum Chromodynamics, Phys. Rev. D 22 (1980) 2157,

G. R. Farrar and D. R. Jackson, The Pion Form-Factor, Phys. Rev. Lett. 43 (1979) 246,

A. V. Efremov and A. V. Radyushkin, Factorization and Asymptotical Behavior of Pion Form-Factor in QCD, Phys. Lett. B 94 (1980) 245,

V. L. Chernyak, V. G. Serbo, and A. R. Zhitnitsky, Calculation of asymptotics of the Pion Electromagnetic Form Factor in the QCD Perturbative Theory, Sov. J. Nucl. Phys. 31 (1980) 552

P. Maris and P. C. Tandy, The pi, K+, and K0 electromagnetic form-factors, Phys. Rev. C 62 (2000) 055204,

A. Faessler et al., Pion and sigma meson properties in a relativistic quark model, Physical Review D 68 (2003),

D. Ebert, R. N. Faustov, and V. O. Galkin, Relativistic treatment of the decay constants of light and heavy mesons, Phys. Lett. B 635 (2006) 93,

D. Ebert, R. N. Faustov, and V. O. Galkin, Masses and electroweak properties of light mesons in the relativistic quark model, Eur. Phys. J. C 47 (2006) 745,

A. Bashir et al., Collective perspective on advances in DysonSchwinger Equation QCD, Commun. Theor. Phys. 58 (2012) 79,

M. Chen and L. Chang, A pattern for the flavor dependent quark-antiquark interaction, Chin. Phys. C 43 (2019) 114103,

P. T. P. Hutauruk, I. C. Cloet, and A.W. Thomas, Flavor dependence of the pion and kaon form factors and parton distribution functions, Phys. Rev. C 94 (2016) 035201,

M. A. Ivanov et al., Exclusive semileptonic decays of D and Ds mesons in the covariant confining quark model, Front. Phys. (Beijing) 14 (2019) 64401,

S. Jia and J. P. Vary, Basis light front quantization for the charged light mesons with color singlet Nambu-Jona-Lasinio interactions, Phys. Rev. C 99 (2019) 035206,

P. Maris and C. D. Roberts, Pseudovector components of the pion, pi0 –¿ gamma gamma, and F(pi) (q**2), Phys. Rev. C 58 (1998) 3659,

G. Eichmann et al., Single pseudoscalar meson pole and pion box contributions to the anomalous magnetic moment of the muon, Physics Letters B 797 (2019) 134855

A. S. M. Lopez, H. Sanchis-Alepuz, and R. Alkofer, Elucidating the effect of intermediate resonances in the quark interaction kernel on the time-like electromagnetic pion form factor, arXiv preprint arXiv:2102.12541 (2021)

C. A. Dominguez et al., Pion form-factor in the Kroll-LeeZumino model, Phys. Rev. D 76 (2007) 095002,




How to Cite

J. Leão and J. de Mello, “Pseudoscalar current and covariance with the light-front approach”, Rev. Mex. Fís., vol. 69, no. 6 Nov-Dec, pp. 060801 1–, Nov. 2023.