Structural, electronic, and magnetic properties of ZnTe doped with transition metal Mn

Authors

  • Brach Brach Mohammed V university in Rabat
  • L. Bahmad Mohammed V University
  • S. Benyoussef Mohammed V University

DOI:

https://doi.org/10.31349/RevMexFis.69.051004

Keywords:

ZnTe; ZnMnTe; DFT method; GGA approximation; electronic properties; optical properties; band gap; Mn doping

Abstract

In this article, we examine the structure, electronic, optical, and magnetic properties of ZnTe before and after doping with the transition metal Mn. The ab initio calculations of this compound were performed using the full potential linearized extended full potential planar waveform (FP-LAPW) in the context of density functional theory (DFT) implemented in the Wien2K code. The potential for exchange and correlation was addressed by the GGA approximation. The electronic properties show that the ZnTe material exhibits semiconductor behavior before doping and it becomes semimetal after doping. The findings attained by Monte Carlo simulations display that the ZnMnTe material goes from an antiferromagnetic phase to the paramagnetic phase at the Neel temperature value TN =159.31 K.

References

Y. Uwatoko, I. Umehara, M. Ohashi, T. Nakano, and G. Oomi, Thermal and electronic properties of rare earth compounds at high pressure. In Handbook on the Physics and Chemistry of Rare Earths (Vol. 42, pp. 1-164). (Elsevier 2012)

A. Steinfeld, and A. Meier, Solar fuels and materials. In Encyclopedia of energy (Vol. 5, pp. 623-637). (Elsevier Academic Press 2004)

Y. Zhao et al., Development of high P-T neutron diffraction at LANSCE-toroidal anvil press, TAP-98, in the HIPPO diffractometer. In Advances in high-pressure technology for geophysical applications (pp. 461-474). (Elsevier 2005)

M. Yeadon, J. Murray Gibson, Molecular Beam Epitaxy, Semiconductors, Encyclopedia of Physical Science and Technology (Third Edition), Academic Press, 2003, Pages 113-121, ISBN 9780122274107, https://doi.org/10.1016/B0-12-227410-5/00457-9

C. Hooker, Conceptualising reduction, emergence and selforganisation in complex dynamical systems. In Philosophy of complex systems (pp. 195-222). North-Holland (2011)

A.N. Semenov, I.A. Nyrkova, 1.02 - Statistical Description of Chain Molecules. Polymer Science: A Comprehensive Reference 1 (2012) 3

G. Brauer, K. Sachsenhofer, Et Lang, W. Reinhold, Material and process engineering aspects to improve the quality of the bonding layer in a laser-assisted fused filament fabrication process. Additive Manufacturing, 46 (2020) 102105

B. Z. Tang et al., Processible nanostructured materials with electrical conductivity and magnetic susceptibility: preparation and properties of maghemite/polyaniline nanocomposite films. Chemistry of materials, 11 (1999) 1581

K. Goovaerts et al., Encyclopedia of materials: science and technology. (Elsevier Science, 2002)

Jena, P., and A. W. Castleman Jr. Introduction to atomic clusters. Science and Technology of Atomic, Molecular, Condensed Matter and Biological Systems. 1 (2010) 1

JUN, Sukky et LIU, Wing Kam. Moving least-square basis for band-structure calculations of natural and artificial crystals. In : Material Substructures in Complex Bodies. Elsevier Science Ltd, 2007. p. 163-205

K. Binder,Computer Simulation Techniques in Condensed Matter Physics, Encyclopedia of Condensed Matter Physics, Elsevier, 2005, Pages 211-219, ISBN 9780123694010, https://doi.org/10.1016/B0-12-369401-9/00564-7

KURTH, S., MARQUES, M. A. L., et GROSS, E. K. U. Density-Functional Theory, Editor (s): Franco Bassani, Gerald L. Liedl, Peter Wyder, (Encyclopedia of Condensed Matter Physics. 2005)

S.M. Blinder,Chapter 14 - Density functional theory,Introduction to Quantum Mechanics (Second Edition),Academic Press, (2021), Pages 235-244

Jean-Paul Crocombette, Franc¸ois Willaime,1.16 - Ab Initio Electronic Structure Calculations for Nuclear Materials, Comprehensive Nuclear Materials (Second Edition), Elsevier, (2020), Pages 517-543

VOGL, P., HJALMARSON, Harold P., et DOW, John D. A semi-empirical tight-binding theory of the electronic structure of semiconductors. Journal of physics and chemistry of solids, 44 (1983) 365

J.-P. Crocombette, F. Willaime,1.08 - Ab Initio Electronic Structure Calculations for Nuclear Materials,Comprehensive Nuclear Materials, Elsevier, 2012,Pages 223-248

CHAKRABORTY, Brahmananda. Electronic structure and theoretical aspects on sensing application of 2D materials. In : Fundamentals and Sensing Applications of 2D Materials. Woodhead Publishing, 2019. p. 145-203

H. Zhengran et al. Crystal growth of small-molecule organic semiconductors with nucleation additive. Current Applied Physics, 21 (2021) 107

HYUN, Jerome K. et ZHANG, Shixiong. Growth of nanowire heterostructures and their optoelectronic and spintronic applications. In : Magnetic Nano-and Microwires. Woodhead Publishing, 2020. p. 103-133

ALVIAL-PALAVICINO, Carla et KONRAD, Kornelia. The rise of graphene expectations: Anticipatory practices in emergent nanotechnologies. Futures, 109 (2019) 192

KIM, Munho, SEO, Jung-Hun, SINGISETTI, Uttam, et al. Recent advances in free-standing single crystalline wide bandgap semiconductors and their applications: GaN,SiC, ZnO, βGa2O3, and diamond. Journal of Materials Chemistry C, 5 (2017) 8338

MITZI, David B. Polymorphic one-dimensional (N2H4)2ZnTe: Soluble precursors for the formation of hexagonal or cubic zinc telluride. Inorganic chemistry, 44 (2005) 7078

Azouzi, W., Sigle, W., Labrim, H., Benaissa, M., Sol-gel synthesis of nanoporous LaFeO3 powders for solar applications, Materials Science in Semiconductor Processing, (2019) 104 104682

Ziti, A., Hartiti, B., Labrim, H. et al, Effect of copper concentration on physical, properties of CZTS thin films deposited by dip-coating technique, Applied Physics A: Materials Science and Processing, 125 (2019) 218

S. Idrissi, H. Labrim, L. Bahmad, A. Benyoussef, DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications, Chemical Physics Letters, 766 (2021) 138347, https://doi.org/10.1016/j.cplett.2021.138347

ZAARI, Halima. Etude ab initio des proprietes optiques des matc riaux: cas du ZnTe, CdFe2O4, MgB2. 2015.

Idrissi, S., Labrim, H., Ziti, S., Bahmad, L., A DFT study of the equiatomic quaternary Heusler alloys ZnCdXMn (X=Pd, Ni or Pt), Solid State Communications, 331 (2021) 114292

Goumrhar, F., Bahmad, L., Mounkachi, O., Benyoussef, A., Ab-initio calculations for the electronic and magnetic properties of Cr doped ZnTe, Computational Condensed Matter, 15 (2018) 15-20

Goumrhar, F., Bahmad, L., Mounkachi, O., Benyoussef, A., Ab initio calculations of the magnetic properties of TM (Ti, V)-doped zinc-blende ZnO, International Journal of Modern Physics B, 32 (2018) 1850025

BLAHA, Peter, SCHWARZ, Karlheinz, MADSEN, Georg KH, et al. wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties, 60 (2001) 1-302

ANDERSEN, O. Krogh. Linear methods in band theory. Physical Review B, 12 (1975) 3060

MOMMA, Koichi et IZUMI, Fujio. VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data. Journal of applied crystallography, 44 (2011) 1272- 1276

Y.Yu, J. Zhou, H. Han, C. Zhang, T. Cai, C. Song, et T. Gao, Journal of Alloys and Compounds, 471 (2009) 492

R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi, L. Bahmad, Theoretical investigation of electronic and magnetic properties of MnAu layers, J. Magn. Magn Mater. 326 (2013) 166-170

R. MASROUR, et al. Electronic, magnetic, reentrant and spin compensation phenomena in Fe2MnGa Heusler alloy. Physica Scripta, 95 (2020) 065803

S. Kadri, S. Labidi, R. Masrour, A. Jabar, M. Labidi and M. Ellouze, Investigation of total and partial magnetic moments of Mn2NiAl with pressure at several temperatures, Phase Trans. J. 92 (2019) 699-706.

Downloads

Published

2023-09-01

How to Cite

[1]
B. Brach, L. Bahmad, and S. Benyoussef, “Structural, electronic, and magnetic properties of ZnTe doped with transition metal Mn”, Rev. Mex. Fís., vol. 69, no. 5 Sep-Oct, pp. 051004 1–, Sep. 2023.