Evolution of electronic bandgap by anion variation to explore niobium new halide double perovskites Cs2GeNbX6 (X = Cl, Br, I) for solar cells and thermoelectric applications: first principles analysis


  • Abbes Labdelli Mostaganem University
  • F.Bendahma Abdelhamid Ibn Badis University
  • M.Mana Abdelhamid Ibn Badis University
  • N.Benderdouche Abdelhamid Ibn Badis University




new halide double perovskites, optoelectronic properties, Solar cells, Direct bandgap semiconductors, Thermoelectric applications, Density functional theory


The structural, electronic, optical, and thermoelectric properties of the niobium new halide double perovskites Cs2GeNbX6 (X = Cl, Br, I) were investigated using a density functional theory method. The generalized gradient approximation (GGA) method is used to project the exchange-correlation potential. The tolerance factor and optimizing total energy define the structure's stability. The magnetic moments of our compounds are high, more than 3μB. The compounds have direct narrow band gaps of 0.69, 0.46, and 0.26 eV, respectively, for Cs2GeNbCl6, Cs2GeNbBr6, and Cs2GeNbI6, as determined by band structure calculations. This is ideal for investigating these compounds for use in solar cells. In addition, the investigated compounds were investigated in terms of optical absorption, refractive index, and dielectric constants for energy range 0–12 eV, ensuring absorption in infrared, visible, and ultraviolet regions. This was done in order to study optical characteristics. The investigated compounds are excellent candidates for harvest solar cell applications due to their maximum visible absorption. They are also good candidates for thermoelectric applications due to their Seebeck coefficient, lattice thermal, electric conductivities and figure of merit (ZT) addressed by Boltzmann theory.

Author Biographies

Abbes Labdelli, Mostaganem University

Mostaganem 27000

F.Bendahma, Abdelhamid Ibn Badis University

Dr F.Bendahma is teacher at Abdelhamid Ibn Badis University, Mostaganem

M.Mana, Abdelhamid Ibn Badis University

Pr M. Mana is a teacher at Abdelhamid Ibn Badis University  Mostaganem

N.Benderdouche, Abdelhamid Ibn Badis University

Pr N. Benderdouche is Vice-rector of the Abdelhamid Ibn Badis University of Mostaganem.


J. Scott and M. Dawber, "Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics," Applied Physics Letters, vol. 76, pp. 3801-3803, 2000.

J. J. Urban, W. S. Yun, Q. Gu, and H. Park, "Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate," Journal of the American Chemical Society, vol. 124, pp. 1186-1187, 2002.

A. Dejneka, "perovskite ferroelectric tuned by thermal strain."

S. A. Khan, F. Akram, R. A. Malik, J. C. Kim, R. A. Pasha, S. Lee, et al., "Piezoelectric and ferroelectric properties of lead-free Ga-modified 0.65 BiFeO3–0.35 BaTiO3 ceramics by water quenching process," Ferroelectrics, vol. 541, pp. 54-60, 2019.

R. Song, Y. Zhao, W. Li, Y. Yu, J. Sheng, Z. Li, et al., "High Temperature Stability and Mechanical Quality Factor of Donor-Acceptor Co-Doped BaTiO 3 Piezoelectrics," Available at SSRN 3406952, 2019.

B. Garbarz-Glos, W. Bąk, A. Kalvane, M. Antonova, and G. Klimkowski, "Effects of CuO doping on structure, microstructure and dielectric properties of BaTiO3–PbTiO3 solid solution," Integrated Ferroelectrics, vol. 196, pp. 70-77, 2019.

R. Gotardo, E. Silva, R. Alonso, J. Rosso, D. Silva, G. Santos, et al., "Dielectric, magnetic and structural characterizations in Mn doped 0.9 BiFeO3-0.1 BaTiO3 compositions," Ferroelectrics, vol. 534, pp. 95-102, 2018.

B. Bouadjemi, S. Bentata, A. Abbad, W. Benstaali, and B. Bouhafs, "Half-metallic ferromagnetism in PrMnO3 perovskite from first principles calculations," Solid State Communications, vol. 168, pp. 6-10, 2013.

G. Chen, C. Dai, and C. Ma, "A stable half-metallic ferromagnetic material SrNiO3: a prediction from first principles," in 2014 International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC-14), 2014.

A. Sajawal, M. Ishfaq, G. Murtaza, I. Habib, N. Muhammad, and S. Sharif, "Half metallic ferromagnetism in PrMnO3 orthorhombic stable phase: an experimental and theoretical investigation," Materials Research Express, vol. 5, p. 116103, 2018.

A. Labdelli, A. Boukortt, S. Meskine, H. Abbassa, and A. Zaoui, Investigation of optoelectronic and thermoelectric properties of half-metallic BaRuO3 using DFT+U, Int. J. Comput. Mater. Sci. Eng. 7 (2018) 1850018, url{https://doi.org/10.1142/S2047684118500185}.

A. Labdelli, S. Meskine, A. Boukortt, and R. Khenata, Optoelectronic and magnetic properties of the ortho-perovskite GdRuO3 using DFT+U with spin orbit coupling: predictive study, J. New Technol. Mater. 8 (2018) 126, url{https://doi.org/10.12816/0048932}.

A. Labdelli, N. Hamdad, Predictive study of ferromagnetism and antiferromagnetism coexistence in Ba1−xGdxRuO3induced by Gd-doping, Rev. Mex. Fis. 67 (2021) 1-8.

S.B. Krupanidhi, Ferroelectric thin films and device applications, in: Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals and Devices, Springer, 1993: pp. 601–625.

R. Waser, Modeling of electroceramics—applications and prospects, Journal of the European Ceramic Society. 19 (1999) 655–664.

N. Setter, Electroceramics: looking ahead, Journal of the European Ceramic Society. 21 (2001) 1279

E. Greul, M. L. Petrus, A. Binek, P. Docampo, T. Bein, highly stable, phase Pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J Mater Chem, 5 (2017)19972-19981.

M. Saxena, K. Tanwar, T. Maiti, environmentally friendly Sr2TiMoO6 double perovskite for high temperature thermoelectric applications. Scripta Mater 130 (2017) 205-209.

T. Wu, X. Liu, X. H. Luo, X. Lin, D. Cui, Y. Wang, H. Segawa, Y. Zhang, L. Han, Lead-free tin perovskite solar cells, Joule, 5 (4) (2021) 863-886

J. S. Manser, J. A. Christians, P. V. Kamat, Intriguing optoelectronic properties of metal halide perovskites. Chem Rev 116 (2016) 12956-13008.

H. Wang, W. Su, J. Liu, C. Wang, Recent development of n-type perovskite thermoelectric, J. Materiomics, 2(3) (2016) 225-236.

P.A. Nawaz, G.M. Mustafa, S.S. Iqbal, N. Noor, T.S. Ahmad, A. Mahmood, R. Neffati, Theoretical investigations of optoelectronic and transport properties of Rb2YInX6 (X= Cl, Br, I) double perovskite materials for solar cell applications, Sol. Energy 231 (2022) 586–592.

T. Zelai, S.A. Rouf, Q. Mahmood, S. Bouzgarrou, M.A. Amin, A. Aljameel, T. Ghrib, H. Hegazy, A. Mera, First-principles study of lead-free double perovskites Ga2PdX6 (X= Cl, Br, and I) for solar cells and renewable energy, J. Mater. Res. Technol. 16 (2022) 631-639.

S. Mitra, Y. Pak, N. Alaal, M.N. Hedhili, D.R. Almalawi, N. Alwadai, Novel P-type wide bandgap manganese oxide quantum dots operating at deep UV range for optoelectronic, Adv. Opt. Mater. 7 (21) (2019) 1900801.

M.W. Mukhtar, M. Ramzan, M. Rashid, G. Naz, M. Imran, F. Fahim, A.A. AlObaid, T. I. Al Muhimeed, Q. Mahmood, New lead-free double perovskites A2NaInI6 (A= Cs, Rb) for solar cells and renewable energy; first principles analysis, Mater. Sci. Eng.: B 273 (2021), 115420.

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050–6051.

M. Houari, B. Bouadjemi, A. Abbad, W. Benstaali, S. Haid, T. Lantri, A. Zitouni, S. Bentata, B. Bouhafs, Z. Aziz, Chinese Journal of Physics 56 (2018) 1756.

X. Xu, Y. Zhong, Z. Shao, Trends in Chemistry 1 (2019) 410.

X. Du, D. He, H. Mei, Y. Zhong, N. Cheng, Physics Letters A 384 (2020) 126169.

X. Liu, J. Gao, Q. Wang, Structural-property correlations of all-inorganic CsPbBr3 perovskites via synergetic controls by PbBr2, 2-mercapto-3-methyl-4-thiazoleacetic acid and water, Chemica Engineering Journal, 428 (2022)131117.

Babayigit A, Ethirajan A, Muller M, Conings B. Toxicity of organometal halide perovskite solar cells. Nat Mater. 2016;15 (3):247-251.

V.T. Tiong, N.D. Pham, T. Wang, T. Zhu, X. Zhao, Y. Zhang, Q. Shen, J. Bell, L. Hu, S. Dai, Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells, Adv. Funct. Mater. 28 (2018) 1705545.

G. Murtaza, T. Alshahrani, R. M. A. Khalil, Q. Mahmood, T. H. Flemban, H. Althib, A. Laref, Lead Free Double Perovsites Halides X2AgTlCl6 (X = Rb, Cs) for solar cells and renewable energy applications, J. Solid State Chem. 297, (2021) 121988.

G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, F. Giustino, Lead-free halide double perovskites via heterovalent substitution of noble metals, J. Phys. Chem. Lett. 7 (2016) 1254–1259.

A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications, J. Am. Chem. Soc. 138 (2016) 2138–2141.

G. Volonakis, A.A. Haghighirad, R.L. Milot, W.H. Sio, M.R. Filip, B. Wenger, M. B. Johnston, L.M. Herz, H.J. Snaith, F. Giustino, Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap, J. Phys. Chem. Lett. 8 (2017) 772–778.

B. Yang, J. Chen, S. Yang, F. Hong, L. Sun, P. Han, T. Pullerits, W. Deng, K. Han, Lead-free silver-bismuth halide double perovskite nanocrystals, Angew. Chem. 130 (2018) 5457–5461.

G. Volonakis, A.A. Haghighirad, H.J. Snaith, F. Giustino, Route to stable lead-free double perovskites with the electronic structure of CH3NH3PbI3: a case for mixedcatio [Cs/CH3NH3/CH(NH2)2]2InBiBr6, J. Phys. Chem. Lett. 8 (2017) 3917–3924.

W. Meng, X. Wang, Z. Xiao, J. Wang, D.B. Mitzi, Y. Yan, Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites, J. Phys. Chem. Lett. 8 (2017) 2999–3007.

Zeng H, Cai B, Chen X, et al. A class of Pb-free double Perovskite halide semiconductors with intrinsic ferromagnetism, large spin splitting and high curie temperature. Mater. Horiz. 2018; 5:961-968.

Nabi M, Gupta DC. Small-band gap halide double perovskite for optoelectronic properties. Int J Energy Res. 2020, 1–13.

. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, G. K. H. Madsen, WIEN2k An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties User’s Guide, WIEN2k 17.1 (Release 07/03/2017) WIEN2k An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties.

. E. Sjöstedt, L. Nordström, and D. Singh, an alternative way of linearizing the augmented plane-wave method. Solid State Communications vol. 114 (2000). https://doi.org/10.1016/S0038-1098(99)00577-3

M. Petersen, F. Wagner, L. Hufnagel, M. Scheffler, P. Blaha, K. Schwarz, Improving the efficiency of FP-LAPW calculations, Comput. Phys. Commun. 126, (2000) 294-309.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett. 100, (2008) 136406.

J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient ApproximationMade Simple, Phys. Rev. Lett. 77, (1996) 3865.

G. K. Madsen, D. J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175 (2006) 67

W. Li, J. Carrete, N. A. Katcho, N. Mingo, ShengBTE: A Solver of the Boltzmann Transport Equation for Phonons. Comput. Phys. Commun. 185 (2014) 1747-1758.

Bartel, Christopher J., Christopher Sutton, Bryan R. Goldsmith, Runhai Ouyang, Charles B. Musgrave, Luca M. Ghiringhelli, and Matthias Scheffler. "New tolerance factor to predict the stability of perovskite oxides and halides." Science advances 5, no. 2 (2019): eaav0693.

Zeng H, Cai B, Chen X, et al. A class of Pb-free double Perovskite halide semiconductors with intrinsic ferromagnetism, large spin splitting and high curie temperature. Mater. Horiz. 2018; 5:961-968.

Han, D.-M., Liu, X.-J., Lv, S.-H., Li, H.-P. and Meng, J. [2010] “Elastic properties of cubic perovskite BaRuO3 from first-principles calculations,” Phys. B Condens. Matter. 405, 3117–3119.

Murnaghan, F. D. [1944] “The compressibility of media under extreme pressures,” Proc. Natl. Acad. Sci. USA 30, 244–247.

Mir SA, Gupta DC. Understanding the origin of half-metallicity and thermophysical properties of ductile La2CuMnO6 double perovskite. Int J Energy Res. 2019; 43:4783-4796.

Bhat TM, Gupta DC. Robust thermoelectric performance and high spin polarization in CoMnTiAl and FeMnTiAl compounds. RSC. Adv. 2016; 6:80302-80309.

. S. Al-Qaisi, Q. Mahmood, N.A. Kattan, S. Alhassan, T. Alshahrani, N. Sfina, S. Brini, A. Hakamy, A. Mera, M.A. Amin, Tuning of band gap by variation of halide ions in K2CuSbX6 (X = Cl, Br, I) for solar cells and thermoelectric applications, Journal of Physics and Chemistry of Solids (2023), doi: https://doi.org/10.1016/j.jpcs.2022.111184.

Amin, B., Khenata, R., Bouhemadou, A., Ahmad, I. and Maqbool, M. [2012] “Optoelectronic response of spinels MgAl2O4 and MgGa2O4 through modified Becke– Johnson exchanges potential,” Phys. B Condens. Matter. 407, 2588–2592.

Maqbool, M., Amin, B. and Ahmad, I. [2009] “Bandgap investigations and the effect of the In and Al concentration on the optical properties of InxAl1−xN,” J. Opt. Soc. Am.B. 26, 2181.

Z. Xiao, H. Lei, X. Zhang, Y. Zhou, H. Hosono, T. Kamiya, Ligand-hole in [SnI6] unit and origin of band gap in photovoltaic perovskite variant Cs2SnI6. Bulletin of the Chemical Society of Japan 88 (2015) 1250-1255.

A. A. AlObaid, S. A. Rouf, T. I. Al-Muhimeed, A. I. Aljameel, S. Bouzgarrou, H. H. Hegazy, Q. Mahmood New lead-free double perovskites (Rb2GeCl/Br) 6; a promising material for renewable energy applications. Materials Chemistry and Physics, 271 (2021), 124876.

M. M. Al-Anazy, M. A. Ali, S. Bouzgarrou, G. Murtaza, T. I. Al-Muhimeed, A. A. AlObaid, G. Nazir Study of optoelectronic and thermoelectric properties of double perovskites for renewable energy. Physica Scripta, 96 (2021), 125828.

D. R. Penn, Wave-Number-Dependent Dielectric Function of Semiconductors, Phys. Rev. 128, (1962) 2093.

N. A. Noor, Q. Mahmood, M. Rashid, B. U. Haq, A. Laref, the pressure induced mechanical and optoelectronic behavior of cubic perovskite PbSnO3 via abinitio investigation Ceramics International, 44 (2018) 13750-13756

M. G. B. Ashiq, Q. Mahmood, B. U. Haq, T. H. Flemban, N. A. Kattan, T. Alshahrani, A. Laref, The study of electronics, optoelectronics, thermoelectric, and mechanical properties of Zn/CdSnO3 perovskites, Materials Science in Semiconductor Processing 137 (2022) 106229

H.C. Wang, P. Pistor, M. A. L. Marques, S. Botti Double perovskites as p-type conducting transparent semiconductors: a high-throughput search, J Mater Chem A, 7, (2019) 14705.

Q. Mahmood, T. Zelai, T. Usman, S. Al-Qaisi, M. Morsi, H. Albalawi, A. I. Aljameel, O. A. Alamri, G. Murtaza, First-principles study of lead-free double perovskites K2Pt (Cl/Br)6 for optoelectronic and renewable energy applications,

Journal of Solid-State Chemistry 301, (2021) 122294.

TH Flemban, V Singaravelu, AAS Devi, IS Roqan, Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer, RSC advances 5 (115), (2015) 94670-94678.

M. Sajjad, N. Singh, S. Sattar, S. De Wolf, U. Schwingenschlogl, Ultralow lattice thermal conductivity and thermoelectric properties of monolayer Tl2O, ACS Appl. Energy Mater. 2, (2019) 3004–3008.




How to Cite

A. Labdelli, F. Bendahma, M. Mana, and N. Benderdouche, “Evolution of electronic bandgap by anion variation to explore niobium new halide double perovskites Cs2GeNbX6 (X = Cl, Br, I) for solar cells and thermoelectric applications: first principles analysis”, Rev. Mex. Fís., vol. 69, no. 6 Nov-Dec, pp. 061001 1–, Nov. 2023.