Shannon entropy along hydrogen isoelectronic sequence using Numerov method
DOI:
https://doi.org/10.31349/RevMexFis.69.060401Keywords:
Shannon entropy, Numerov Method, Hydrogen isoelectronic sequence, electron densityAbstract
Shannon entropy (SE) for hydrogen isoelectronic sequence is calculated through numerical simulation. Fast and accurate Numerov method is applied for the computation of the wavefunctions used for the evaluation of Shannon entropy. The reliability of this approach is verified by the excellent comparison with the available literature results. It is observed that Shannon entropy values diminish with an increment in atomic number (Z). Additionally, previously unexplored Shannon entropy behaviour for a variety of higher excited orbitals is investigated. It is found that Shannon entropy exhibits an interesting behavior of increasing and decreasing nature with principal quantum number n and orbital quantum number l, respectively. Benchmark values for Shannon information entropy are established for the ground and excited states as a signature of localization and delocalization of electron density. This will further contribute to the diagnostics of spectroscopic data and atomic system complexity.
References
C.E. Shannon, Bell Syst. Tech. J. 27 (1948) 379.
C.E. Shannon and W. Weaver, The Mathematical Theory of Communication (University of Illinois Press: Urbana, IL, 1949), p. 1.
I.V. Toranzo and J.S. Dehesa, Europhys. Lett. 113 (2016) 48003.
J.S. Dehesa, S. L´opez-Rosa and R.J. Y´anez, J. Math. Phys. 48 (2007) 043503.
E. Widjaja, B.H. Tan and M. Garland, Appl. Spectrosc. 60 (2006) 294.
R. Rocha, Phys. Rev. D 103 (2021) 106027.
A. Víctor, L. Fonfría and E. Padrós, Appl. Spectrosc. 59 (2005) 474.
D.S. Sabirov, and I.S. Shepelevich, Entropy 23 (2021) 1240.
L. Chen and M. Garland, Appl. Spectrosc. 56 (2002) 1422.
L. Rende, H. Dongxia, D. Xuewei, J. Zhao, W. Wang, W. Dai, W. Zhou, X. Huang, M. Li and S. Yang, Opt. Express 24 (2016) 2293.
M.S. Gorgone, J. Ye, M. Miscuglio, A. Afanasev, A.E. Willner and V.J. Sorger, Research 2021 (2021) 9.
C.G. Bertinetto and T. Vuorinen, Appl. Spectrosc. 68 (2014) 155.
A. Roy, Opt. Lett. 46 (2021) 202.
M.J. Lee and Y.D. Jung, Entropy 22 (2020) 881.
Q. Shi and S. Kais, J. Chem. Phys. 121 (2004) 5611.
K. Pineda-Urbina, R.D. Guerrero, A. Reyes, Z. Gómez-Sandoval and R. Flores-Moreno, J. Mol. Model. 19 (2013) 1677.
K.Ch. Chatzisavvas, Ch.C. Moustakidis and C.P. Panos, J. Chem. Phys. 123 (2005) 174111.
K.D. Sen, J. Antolín and J.C. Angulo, Phys. Rev. A 76 (2007) 032502.
I.V. Toranzo and J.S. Dehesa, Physica A 516 (2019) 273.
J.I. Da Silva Filho, Preprints (2019) 2019110250.
L. G and, A. Robles-Kelly, In Proceedings of the 2011 International Conference on Digital Image Computing: Techniques and Applications IEEE Comp. Soc. USA 59 (2011).
S. Majumdar and A.K. Roy, Quantum Rep. 2 (2020) 189.
R. López-Ruiz, H.L. Mancini and X. Calbet, Phys. Lett. A. 209 (1995) 321.
N. Aquino, A. Flores-Riveros and J.F. Rivas-Silva, Phys. Lett. A 377 (2013) 2062.
X.-D. Song, G.-H. Sun and S.-H. Dong, Phys. Lett. A 379 (2015) 1402.
A. Ghosal, N. Mukherjee and A.K. Roy, Ann. Phys. 528 (2016) 796.
S. Bhattacharyya, A.N. Sil, S. Fritzsche and P.K. Mukherjee, Eur. Phys. J. D 46 (2008) 1.
H. Hu, Z. Chen, and W. Chen, Radiat. Eff. Defects Solids 171 (2016) 890.
G.P. Zhao, L. Liu, J.G, Wang and R.K. Janev, Phys. Plasmas 24 (2017) 053509.
V. Decaux, M. Bitter, H. Hsuan, S. Von Goeler, K.W. Hill, R.A. Hulse, G. Taylor, H. Park, and C.P. Bhalla, Phys. Rev. A 43 (1991) 228.
M. Bitter, S. Von Goeler, S. Cohen, K.W. Hill, S. Sesnic, F. Tenney, J. Timberlake, U.I. Safronova, L.A. Vainshtein and J. Dubau, Plasma Physics Lab; Technical Report: United States, 1983.
S.M. Kahn, E. Behar, A. Kinkhabwala and D.W. Savin, Philos. Trans. Math. Phys. Eng. Sci. 360 (2002) 1923.
M.A. Bautista, T.R. Kallman, L.D. Angelini, A. Liedahl and D.P. Smits, Astrophys. J. 509 (1998) 848.
B. Cagnac, M.D. Plimmer, L. Julien and F. Biraben, Rep. Prog. Phys. 57 (1994) 853.
W. Ubachs, W. Vassen, E.J. Salumbides and K.S.E. Eikema, Ann. Phys. (Berlin), 575 (2013) A113.
S. Laporta, E. Remiddi, Encyclopedia of Mathematical Physics 168 (2006).
J.L. Flowers, H.A. Klein, D.J.E. Knight, H.S. Margolis, National Physical Laboratory; Report Centre for Basic, Thermal and Length Metrology: Middlesex, UK, 2001.
C.B.B. Farias, R.C.S. Barreiros, M.F. Da Silva, A.A. Casazza, A. Converti and L.A. Sarubbo, Energies 15 (2022) 311.
J. Wan and N. Guo, Entropy 22 (2020) 33.
J.H. Ou and Y.K. Ho, Atoms 5 (2017) 15.
A.N. Tripathi, R.P. Sagar, R.O. Esquivel and V.H. Smith, Phys. Rev. A 45 (1992) 4385.
A.N. Tripathi, V.H. Smith, R.P. Sagar and R.O. Esquivel, Phys. Rev. A 54 (1996) 1877.
K. Aichele, U. Hartenfeller, D. Hathiramani, G. Hofmann, V. Schäfer, M. Steidl, M. Stenke and E. Salzborn, Phys. Scr. 1997 (1997) 125.
W. Nascimento and F. Prudente, Chem. Phys. Lett. 691 (2018) 401.
S.R. Gadre, S.B. Sears, S.J. Chakravorty and R.D. Bendale, Phys. Rev. A 32 (1985) 2602.
R. Gonza´lez-Fe´rez and J.S. Dehesa, Phys. Rev. Lett. 91 (2003) 113001.
A. Kumar and C. Kumar, Int. J. Phys. Math. Sci. 5 (2011) 1650.
Y. He, Y. Chen, J. Han, Z.B. Zhu, G. Xiang, H.D. Liu, B.H. Ma and D.C. He, Eur. Phys. J. D 69 (2015) 283.
N. Mukherjee and A.K. Roy, Int. J. Quant. Chem. 118 (2018) e25596.
M.J. Lee and Y.D. Jung, Astrophys. J. 871 (2019) 111.
R.J. Yáñez, W. Van Assche and J.S. Dehesa, Phys. Rev. A 50 (1994) 3065.
K.D. Sen, J. Chem. Phys. 123 (2005) 074110.
N. Flores-Gallegos, Chem. Phys. Lett. 666 (2016) 62.
S. Saha and J. Jose, Phys. Rev. A 102 (2020) 052824.
M.A. Martínez-Sánchez, R. Vargas and J. Garza, Quantum Rep. 1 (2019) 208.
B.V. Numerov, Mon. Notices Royal Astron. Soc. 84 (1924) 592.
B.V. Numerov, Astron. Nachrichten 230 (1927) 359.
R. Joshi, P. Kumar, A.K.S. Jha and T. Kumar, Journal of Atomic, Molecular, Condensed matter and Nano physics 8 (2021) 83.
J.L.M. Quiroz González and D. Thompson, Comput. Phys. 11 (1997) 514.
S. Mondal, K. Sen and J.K. Saha, Phys. Rev. A 105 (2022) 032821.
A. Santos, F. Prudente, M. Guimarães and W. Nascimento, Quantum Rep. 4 (2022) 544.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Rachna Joshi, Nupur Verma, Man Mohan
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.