New Eigensolution of the Klein-Gordon and Schrödinger equations for improved modified Yukawa-Kratzer potential and its applications using Boop's Shift method and standard perturbation theory in the 3D-ERQM and 3D-ENRQM symmetries
DOI:
https://doi.org/10.31349/RevMexFis.69.060802Keywords:
Klien-Gordon equation, modified Yukawa-Kratzer potential; Noncommutative space; Bopp's shift method, and star products.Abstract
The deformed Klein-Gordonequation has been solved in three-dimensional extended relativistic quantum mechanics (3D-ERQM) symmetries for the improved modified Yukawa-Kratzer potential (IMYKP) model under the influence of the deformation space-space symmetries. The new relativistic energy eigenvalues were calculated using the parametric Bopp’s shift method and standard perturbation theory in addition to the approximation scheme suggested by Greene and Aldrich for the inverse square terms. The new relativistic energy eigenvalues of (LiH, HCl, CO and H2) molecules under the IMYKP model it was shown to be sensitive to the atomic quantum numbers (j, l, s, m), mixed potential depths (V0, De, re), the screening parameter’s inverse α and noncommutativity parameters (Θ,τ ,χ). In addition, we analyzed the nonrelativistic energy values by applying the well-known transmission rules known in the literature. In addition, we studied many special cases useful to researchers in the framework of the new extended symmetries, such as the improved modified Kratzer potential, the improved generalized Kratzer potential, the improved Kratzer potential, the improved modified Kratzer plus screened Coulomb potential, the improved Hellmann potential, the improved Yukawa potential, and improved inversely square Yukawa potential. We noticed that these particular results are identical to our previous work and other known works in the literature. The study is further extended to calculate the mass spectra of mesons of charmonium (cc) and bottomonium (bb) within the framework of the IMYKP model in three-dimensional extended non-relativistic quantum mechanics (3D-ENRQM) symmetries.
References
: R. H. Parmar and P.C. Vinodkumar, Eigensolution of the Klein-Gordon equation for modified Yukawa-Kratzer potential and its applications using parametric Nikiforov-Uvarov and SUSYQM method Journal of Mathematical Chemistry 59(7) (2021) 1638 https://doi.org/10.1007/s10910-021-01258-y
: C.O. Edet, U.S. Okorie, A.T. Ngiangiaand A.N. Ikot, Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential Indian J Phys 94 (2020) 425 https://doi.org/10.1007/s12648-019-01477-9
: A.N. Ikot, U. Okorie, A.T. Ngiangia, C.A. Onate, C.O. Edet, I.O. Akpan and P.O. Amadi, Bound state solutions of the Schrödinger equation with energy dependent molecular Kratzer potential via asymptotic iteration method Eclética Química Journal 45, n. 1 (2020) 65 https://doi.org/10.26850/1678-4618eqj.v45.1.p65-76
: A.N. Ikot, U.S. Okorie, R. Sever and G.J. Rampho, Eigensolution, expectation values and thermodynamic properties of the screened Kratzer potential Eur. Phys. J. Plus 134 (2019) 386 https://doi.org/10.1140/epjp/i2019-12783-x
: A.I. Ahmadov, M. Demirci, S.M. Aslanova, M.F. Mustamin, Arbitrary l-state solutions of the Klein-Gordon equation with the Manning-Rosen plus a Class of Yukawa potentials Phys. Lett. A 384 (2020) 126372 https://doi.org/10.1016/j.physleta.2020.126372
: K.R. Purohit, R.H. Parmar and A.K. Rai, Energy and momentum eigenspectrum of the Hulthén-screened cosine Kratzer potential using proper quantization rule and SUSYQM method J Mol Model 27 (2021) 358 https://doi.org/10.1007/s00894-021-04965-0
: K.R. Purohit, R.H. Parmar and A.K. Rai, Solution of the modified Yukawa-Kratzer potential under influence of the external fields and its thermodynamic properties J Math Chem 60 (2022) 1930 https://doi.org/10.1007/s10910-022-01397-w
: A. Kratzer, Die ultraroten Rotations spektren der Halogenwasserstoffe Z. Physik 3 (1920) 289 https://doi.org/10.1007/BF01327754
: M. Aygun, O. Bayrak, I. Boztosun, Y. Sahin, The energy eigenvalues of the Kratzer potential in the presence of a magnetic field Eur. Phys. J. D 66 (2012) 35 https://doi.org/10.1140/epjd/e2011-20319-5
: U.S. Okorie, E.E. Ibekwe, A.N. Ikot, M.C. Onyeaju and E.O. Chukwuocha, Thermodynamic Properties of the Modified Yukawa Potential J. Korean Phys. Soc. 73 (2018) 1211 https://doi.org/10.3938/jkps.73.1211
: E. Omugbe, O.E. Osafle, M.C. Onyeaju, I.B. Okon and C.A. Onate, The unifed treatment on the non-relativistic bound state solutions, thermodynamic properties and expectation values of exponential-type potentials Can. J. Phys. 99(7) (2020) 521 https://doi.org/10.1139/cjp-2020-0368
: A. D. Antia, I. B. Okon, C. N. Isonguyo, A. O. Akankpo and N. E. Eyo, Bound state solutions and thermodynamic properties of modified exponential screened plus Yukawa potential J Egypt Math Soc 30 (2022) 11 https://doi.org/10.1186/s42787-022-00145-y
: O. Bertolami and R. Queiroz, Phase-space noncommutativity and the Dirac equation Phys. Lett. A 375(46) (2011) 4116 https://doi.org/10.1016/j.physleta.2011.09.053
: E. Witten, Non-commutative geometry and string field theory Nuclear Physics B 268(2) (1986) 253 https://doi.org/10.1016/0550-3213(86)90155-0
: S. Capozziello, G. Lambiase and G. Scarpetta, Generalized Uncertainty Principle from Quantum Geometry Int. J. Theor. Phys. 39(1) (2000) 15 https://doi.org/10.1023/a:1003634814685
: S. Doplicher, K. Fredenhagen and J.E. Roberts, Space time quantization induced by classical gravity Phys. Lett. B 331(1-2) (1994) 39 https://doi.org/10.1016/0370-2693(94)90940-7
: E. Witten, Reflections on the Fate of Spacetime Phys. Today 49(4) (1996) 24 https://doi.org/10.1063/1.881493
: A. Kempf, G. Mangano and R.B. Mann, Hilbert space representation of the minimal length uncertainty relation Phys. Rev. D 52(2) (1995) 1108 https://doi.org/10.1103/PhysRevD.52.1108
: R.J. Adler and D.I. Santigo, On gravity and the uncertainty principal Mod. Phys. Lett. A 14 (20) (1999) 1371 https://doi.org/10.1142/s0217732399001462.
: T. Kanazawa, G. Lambiase, G. Vilasi A. Yoshioka, Noncommutative Schwarzschild geometry and generalized uncertainty principle Eur. Phys. J. C 79, 95 (2019) 1. https://doi.org/10.1140/epjc/s10052-019-6610-1
: F. Scardigli, Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment Phys. Lett. B 452(1-2) (1999) 39 https://doi.org/10.1016/s0370-2693(99)00167-7
: S.I. Vacaru, Exact solutions with noncommutative symmetries in Einstein and gauge gravity J. Math. Phys. 46(4) (2005) 042503 https://doi.org/10.1063/1.1869538
: A. Maireche, A New Approach to the Approximate Analytic Solution of the Three-Dimensional Schrödinger Equation for Hydrogenic and Neutral Atoms in the Generalized Hellmann Potential Model Ukr. J. Phys. 65(11) ( 2020) 987 https://doi.org/10.15407/ujpe65.11.987
: H.S. Snyder, Quantized Space-Time Phys. Rev. 71 (1947) 38 https://doi.org/10.1103/PhysRev.71.38; The Electromagnetic Field in Quantized Space-Time Phys. Rev. 72 (1947) 68 https://doi.org/10.1103/PhysRev.72.68
: A. Connes and J. Lott, Particle models and noncommutative geometry Nucl. Phys. Proc. Suppl. 18B (1991) 29 https://doi.org/10.1016/0920-5632(91)90120-4
: A. Connes, Noncommutative Geometry (ISBN-9780121858605) 1994.
: N. Seiberg and E. Witten, String theory and noncommutative geometry JHEP 1999 (09) (1999) 32. https://doi.org/10.1088/1126-6708/1999/09/032
: S. Terashima, A note on super fields and noncommutative geometry Phys. Lett. B 482(1-3) (2000) 276 https://doi.org/10.1016/s0370-2693(00)00486-x
: A. Maireche, Effects of Three-Dimensional Noncommutative Theories on Bound States Schrödinger Molecular under New Modified Kratzer-type Interactions J. Nano- Electron. Phys. 10 No 2 (2018) 02011 https://doi.org/10.21272/jnep.10(2).02011
: A. Maireche, New Non-relativistic Bound States Solutions for Modified Kratzer Potential in One-electron Atoms J. Nano- Electron. Phys. 9 No 3 (2017) https://doi.org/10.21272/jnep.9(3).03031
: A. Maireche, Nonrelativistic treatment of hydrogen-like and neutral atoms subjected to the generalized perturbed Yukawa potential with centrifugal barrier in the symmetries of noncommutative quantum mechanics Int. J. Geom. Met. Mod. Phys. 17, No. 05 (2020) 2050067 https://doi.org/10.1142/S021988782050067X
: A. Maireche, Bound-state Solutions of Klein-Gordon and Schrödinger Equations for Arbitrary l-state with Linear Combination of Hulthén and Kratzer Potentials Afr. Rev. Phys. 15 (2020) 19.
: A. Maireche, The Investigation of Approximate Solutions of Deformed Klein-Gordon and Schrödinger Equations Under Modified More General Exponential Screened Coulomb Potential Plus Yukawa Potential in NCQM Symmetries Few-Body Syst 62 (2021) 66 https://doi.org/10.1007/s00601-021-01639-8
: A. Maireche, A Theoretical Model of Deformed Klein-Gordon Equation with Generalized Modified Screened Coulomb Plus Inversely Quadratic Yukawa Potential in RNCQM Symmetries Few-Body Syst 62 (2021) 12 https://doi.org/10.1007/s00601-021-01596-2
: A. Maireche, A New Theoretical Investigation of the Modified Equal Scalar and Vector Manning-Rosen Plus Quadratic Yukawa Potential Within the Deformed Klein-Gordon and Schrödinger Equations Using the Improved Approximation of the Centrifugal Term and Bopp's Shift Method in RNCQM and NRNCQM Symmetries, Spin J. 11, No. 4 (2021) 2150029-31. https://doi.org/10.1142/S2010324721500296
: A. Maireche, A new theoretical study of the deformed unequal scalar and vector Hellmann plus modified Kratzer potentials within the deformed Klein-Gordon equation in RNCQM symmetries Mod. Phys. Lett. A 36(33) (2021) 2150232 https://doi.org/10.1142/S0217732321502321
: A. Maireche, The investigation of approximate solutions of Deformed Klein-Fock-Gordon and Schrödinger Equations under Modified Equal Scalar and Vector Manning-Rosen and Yukawa Potentials by using the Improved Approximation of the Centrifugal term and Bopp's shift Method in NCQM Symmetries Lat. Am. J. Phys. Educ. 15, No. 2 (2021) 2310-1
: M. Darroodi, H. Mehraban and H. Hassanabadi, The Klein-Gordon equation with the Kratzer potential in the noncommutative space Mod. Phys. Lett. A 33 (35) (2018) 1850203 https://doi.org/10.1142/s0217732318502036
: A. Maireche, Investigations on the Relativistic Interactions in One-Electron Atoms with Modified Yukawa Potential for Spin 1/2 Particles International Frontier Science Letters 11(2017) 29 https://doi.org/10.18052/www.scipress.com/IFSL.11.29
: A. Maireche, Approximate Arbitrary k State Solutions of Dirac Equation with Improved Inversely Quadratic Yukawa Potential within Improved Coulomb-like Tensor Interaction in Deformation Quantum Mechanics Symmetries Few-Body Syst 63 (2022) 54 https://doi.org/10.1007/s00601-022-01755-z
: A. Maireche, On the interaction of an improved Schiöberg potential within the Yukawa tensor interaction under the background of deformed Dirac and Schrödinger equations Indian J Phys 97 (2023) 519 https://doi.org/10.1007/s12648-022-02433-w
: A. Maireche, A new study of relativistic and nonrelativistic for new modified Yukawa potential via the BSM in the framework of noncommutative quantum mechanics symmetries: An application to heavy-light mesons systems YJES 19(2) (2022)1 https://doi.org/10.53370/001c.39615
: A. Maireche, Approximate k-state solutions of the deformed Dirac equation in spatially dependent mass for the improved Eckart potential including the improved Yukawa tensor interaction in ERQM symmetries Int. J. Geom. Met. Mod. Phys. 19, No. 06 (2022) 2250085 https://doi.org/10.1142/S0219887822500852
: A. Saidi and M.B. Sedra, Spin-one (1 + 3)-dimensional DKP equation with modified Kratzer potential in the non-commutative space Mod. Phys. Lett. A 35(5) (2020) 2050014 https://doi.org/10.1142/s0217732320500145
: P. Nicolini, Noncommutative black holes, the final appeal to quantum gravity: a review Int. J Mod. Phys. A 24(07) (2009) 1229 https://doi.org/10.1142/s0217751x09043353
: O. Bertolami, G.J. Rosa, C.M.L. Dearagao, P. Castorina and D. Zappala, Scaling of variables and the relation between noncommutative parameters in noncommutative quantum mechanics Mod. Phys. Lett. A 21(10) (2006) 795 https://doi.org/10.1142/s0217732306019840
: E.E. N'Dolo, D.O. Samary, B. Ezinvi and M.N. Ounkonnou, Noncommutative Dirac and Klein-Gordon oscillators in the background of cosmic string: spectrum and dynamics Int. J. Geom. Met. Mod. Phys. 17(05) (2020) 2050078 https://doi.org/10.1142/s0219887820500784
: K.P. Gnatenko, V.M. Tkachuk, Composite system in rotationally invariant noncommutative phase space Int. J. Mod. Phys. A 33(07) (2018) 1850037 https://doi.org/10.1142/s0217751x18500379
: A. Maireche, Bound-state solutions of the modified Klein-Gordon and Schrödinger equations for arbitrary l-state with the modified Morse potential in the symmetries of noncommutative quantum mechanics J. Phys. Stud. 25(1) (2021) 1002 https://doi.org/10.30970/jps.25.1002
: S. Aghababaei and G. Rezaei, Energy level splitting of a 2D hydrogen atom with Rashba coupling in non-commutative space, Commun Theor. Phys. 72 (2020) 125101 https://doi.org/10.1088/1572-9494/abb7cc
: E.F. Djemaï and H. Smail, On Quantum Mechanics on Noncommutative Quantum Phase Space Commun. Theor. Phys. 41(6) (2004) 837 https://doi.org/ 10.1088/0253-6102/41/6/837
: J.F.G. Santos, Heat flow and noncommutative quantum mechanics in phase-space J. Mat. Phys. 61(12) (2020) 122101 https://doi.org/10.1063/5.0010076
: O. Bertolami, J.G. Rosa, C.M.L. De Aragão, P. Castorina and D. Zappalà, Noncommutative Gravitational Quantum Wel Phys. Rev. D 72(2) (2005) 025010 https://doi.org/10.1103/physrevd.72.025010
: T. Harko and S.D. Liang, Energy-dependent noncommutative quantum mechanics Eur. Phys. J. C 79(4) (2019) https://doi.org/10.1140/epjc/s10052-019-6794-4
: M. Chaichian, M.M. Sheikh-Jabbari and A. Tureanu, Hydrogen Atom Spectrum and the Lamb Shift in Noncommutative QED Phys. Rev. Lett. 86(13) (2001) 2716 https://doi.org/10.1103/physrevlett.86.2716
: E.M.C. Abreu, C. Neves and W. Oliveira, Noncommutativity from the symplectic point of view Int. J. Mod. Phys. A 21 (2006) 5359 https://doi.org/10.1142/s0217751x06034094
: E.M.C. Abreu, J.A. Neto, A.C.R. Mendes, C. Neves, W. Oliveira and M.V. Marcial, Lagrangian formulation for noncommutative nonlinear systems Int. J. Mod. Phys. A 27 (2012) 1250053 https://doi.org/10.1142/s0217751x12500534
: Wang J. and Li K., The HMW effect in Noncommutative Quantum Mechanics J. Phys. A Math. Theor. 40(9) (2007) 2197 https://doi.org/10.1088/1751-8113/40/9/021
: A.D. Alhaidari, H. Bahlouli, A. Al-Hasan, Dirac and Klein--Gordon equations with equal scalar and vector potentials 349(1-4) (2006) 87 https://doi.org/10.1016/j.physleta.2005.09.008
: A. Connes, Noncommutative geometry and reality J. Mat. Phys. 36(11) (1995) 6194 https://doi.org/10.1063/1.531241
: A. Connes, J. Cuntz and M.A. Rieffel, Noncommutative Geometry Oberwolfach Reports 4(4) (2008) 2543 https://doi.org/10.4171/OWR/2007/43
: A. Connes, J. Cuntz, M.A. Rieffel and G. Yu, Noncommutative Geometry, Oberwolfach Reports 10(3) (2013) 2553 https://doi.org/10.4171/OWR/2013/45
: P. M. Ho and H.C. Kao, Noncommutative Quantum Mechanics from Noncommutative Quantum Field Theory Phys. Rev. Lett. 88(15) (2002) 151602 https://doi.org/10.1103/physrevlett.88.151602
: A. Connes, M.R. Douglas and A. Schwarz, Noncommutative Geometry and Matrix Theory JHEP 02 (1998) 003. https://doi.org/10.1088/1126-6708/1998/02/003
: H. Benzair, M. Merad, T. Boudjedaa and A. Makhlouf, Relativistic Oscillators in a Noncommutative Space: a Path Integral Approach Zeitschrift Für Naturforschung A 67(1-2) (2012). https://doi.org/10.5560/zna.2011-0060
: B. Mirza and M. Mohadesi, The Klein-Gordon and the Dirac Oscillators in a Noncommutative Space Commun. Theor. Phys. (Beijing, China) 42 (2004) 664 https://doi.org/10.1088/0253-6102/42/5/664
: M.R. Douglas and N.A. Nekrasov, Noncommutative Field Theory, Reviews of Modern Physics 73(4) (2001) 977 https://doi.org/10.1103/RevModPhys.73.977
: H. Motavalli and A.R. Akbarieh, Klien-Gordon equation for the Coulomb potential in noncommutative space Mod. Phys. Lett. A 25 (29) (2010) 2523 https://doi.org/10.1142/s0217732310033529
: T. Curtright, D. Fairlie and C. Zachos, Features of time-independent Wigner functions Phys. Rev. D 58 (1998) 025002 https://doi.org/10.1103/PhysRevD.58.025002
: F. Bopp, La mécanique quantique est-elle une mécanique statistique classique particulière In Annales de l'institut Henri Poincaré 15, No. 2 (1956) 81
: L. Mezincescu, Star Operation in Quantum Mechanics, (2000). https://arxiv.org/abs/hep-th/0007046.
: J. Gamboa, M. Loewe and J.C. Rojas, Noncommutative quantum mechanics Phys. Rev. D 64 (2001) 067901 https://doi.org/10.1103/PhysRevD.64.067901.
: L. Gouba, A comparative review of four formulations of noncommutative quantum mechanics Int. J. Mod. Phys. A 31(19) (2016) 1630025 https://doi.org/10.1142/s0217751x16300258
: A. Maireche, The Influence of Deformation Phase-Space on Spectra of Heavy Quarkonia in Improved Energy Potential at Finite Temperature Model of Shrodinger Equation Via the Generalized Boob's Shift Method and Standard Perturbation Theory East European Journal of Physics 2023 (1) (2023) 28 https://doi.org/10.26565/2312-4334-2023-1-03
: A. Maireche, A theoretical investigation of nonrelativistic bound state solution at finite temperature using the sum of modified Cornell plus inverse quadratic potential Sri Lankan Journal of Physics 21 (2020) 11 http://doi.org/10.4038/sljp.v21i1.8069
: A. Maireche, New Relativistic Atomic Mass Spectra of Quark (u, d and s) for Extended Modified Cornell Potential in Nano and Plank's Scales J. Nano- Electron. Phys. 8 (1) (2016) 01020 https://doi.org/10.21272/jnep.8(1).01020
: H. Hassanabadi, S.S. Hosseini, S. Zarrinkamar, The Linear Interaction in Noncommutative Space; Both Relativistic and Nonrelativistic Cases Int. J. Theor. Phys. 54 (2015) 251 https://doi.org/10.1007/s10773-014-2219-1
: M. Solimanian, J. Naji and K. Ghasemian, The noncommutative parameter for cc in nonrelativistic limit Eur. Phys. J. Plus 137 (2022) 331 https://doi.org/10.1140/epjp/s13360-022-02546-5
: A. Maireche, Heavy-light mesons in the symmetries of extended nonrelativistic quark model YJES. 17(1) (2019) 51 https://doi.org/10.53370/001c.23732
: A. Maireche, New relativistic and nonrelativistic model of diatomic molecules and fermionic particles interacting with improved modified Mobius potential in the framework of noncommutative quantum mechanics symmetries YJES 18(1) (2021)10 https://doi.org/10.53370/001c.28090
: A. Maireche, The Effects of Noncommutativity on the Energy Spectra for Mass-Dependent Klein-Gordon and Shrödinger Equations with Vector Quark-Antiquark Interaction and Harmonic Oscillator Potential: Application to HLM Systems Bulg. J. Phys. 50 no.1 (2023) 054 https://doi.org/10.55318/bgjp.2023.50.1.054
: A. Maireche, Heavy quarkonium systems for the deformed unequal scalar and vector Coulomb-Hulthén potential within the deformed effective mass Klein-Gordon equation using the improved approximation of the centrifugal term and Bopp's shift method in RNCQM symmetries Int. J. Geom. Met. Mod. Phys. 18(13) (2021) 2150214 https://doi.org/10.1142/S0219887821502145
: A. Maireche, Solutions of Klein-Gordon equation for the modified central complex potential in the symmetries of noncommutative quantum mechanics Sri Lankan Journal of Physics 22(1) (2021) 1 https://doi.org/10.4038/sljp.v22i1.8079
: A. Maireche,The Klein-Gordon equation with modified Coulomb plus inverse-square potential in the noncommutative three-dimensional space Mod. Phys. Lett. A 35(5) (2020) 052050015 https://doi.org/10.1142/s0217732320500157
: A. Maireche, Modified Unequal Mixture Scalar Vector Hulthén-Yukawa Potentials Model as a Quark-Antiquark Interaction and Neutral Atoms via Relativistic Treatment Using the Improved Approximation of the Centrifugal Term and Bopp's Shift Method Few-Body Syst 61 (2020) 30 https://doi.org/10.1007/s00601-020-01559-z
: M.Z. Abyaneh and M. Farhoudi, Electron dynamics in noncommutative geometry with magnetic field and Zitterbewegung phenomenon Eur. Phys. J. Plus 136 (2021) 863 https://doi.org/10.1140/epjp/s13360-021-01855-5
: Y. Yi, K. Kang, W. Jian-Hua and C. Chi-Yi, Spin-1/2 relativistic particle in a magnetic field in NC phase space, Chin. Phys. C 34(5) (2010) 543 https://doi.org/10.1088/1674-1137/34/5/005
: A. Maireche, Diatomic molecules and fermionic particles with improved Hellmann-generalized Morse potential through the solutions of the deformed Klein-Gordon, Dirac and Schrödinger equations in extended relativistic quantum mechanics and extended nonrelativistic quantum mechanics symmetries Rev. Mex. Fís. 68, no. 2 (2022) 020801 https://doi.org/10.31349/RevMexFis.68.020801
: A. Maireche, A Novel Exactly Theoretical Solvable of Bound States of the Dirac-Kratzer-Fues Problem with Spin and Pseudo-Spin Symmetry International Frontier Science Letters 10 (2016) 8 https://doi.org/10.18052/www.scipress.com/IFSL.10.8 https://doi.org/10.1007/s00601-020-01559-z
: R.R. Cuzinatto, M. De Montigny and P.J. Pompeia, Non-commutativity and non-inertial effects on a scalar field in a cosmic string space-time: II. Spin-zero Duffin-Kemmer-Petiau-like oscillator Class. Quantum Grav. 39 (2022) 075007 https://doi.org/10.1088/1361-6382/ac51bc
: H. Aounallah, A. Boumali, Solutions of the Duffin-Kemmer Equation in Non-Commutative Space of Cosmic String and Magnetic Monopole with Allowance for the Aharonov-Bohm and Coulomb Potentials Phys. Part. Nuclei Lett. 16 (2019) 195 https://doi.org/10.1134/S1547477119030038
: R.L. Greene, C. Aldrich, Variational wave functions for a screened Coulomb potential Phys. Rev. A 14 (1976) 2363 https://doi.org/10.1103/PhysRevA.14.2363
: A. Tas, O. Aydogdu and M. Salti, Dirac particles interacting with the improved Frost--Musulin potential within the effective mass formalism Annals of Physics 379 (2017) 67 https://doi.org/10.1016/j.aop.2017.02.010
: A.I. Ahmadov, M. Demirci, S.M. Aslanova and M.F. Mustamin, Arbitrary l-state solutions of the Klein-Gordon equation with the Manning-Rosen plus a Class of Yukawa potentials, Phys. Lett. A 384 (2020) 126372 doi:10.1016/j.physleta.2020.126372
: M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, New York), 1964.
: K. Bencheikh, S. Medjedel and G. Vignale, Current reversals in rapidly rotating ultracold Fermi gases Phys. Lett. A 89(6)(2014) https://doi.org/10.1103/physreva.89.063620
: S.M. Ikhdair, B.J. Falaye, M. Hamzavi, Nonrelativistic molecular models under external magnetic and AB flux fields Ann. Phys. 353 (2015) 282 https://doi.org/10.1016/j.aop.2014.11.017
: N. Saad, R. Hall, H. Ciftci, The Klein-Gordon equation with the Kratzer potential in d dimensions Eur. J. Phys. 6(3) (2008) 717 https://doi.org/10.2478/s11534-008-0022-4
: C.A. Onate and J.O. Ojonubah, Eigensolutions of the Schrödinger equation with a class of Yukawa potentials via supersymmetric approach J. Theor. Appl. Phys. 10 (2016) 21 https://doi.org/10.1007/s40094-015-0196-2
: A. Maireche, A model of modified Klien-Gordon equations with modified scalar-vector Yukawa potential Afr. Rev. Phys. 15 (2020) 1.
: A.I. Ahmadov, M. Demirci, S.M. Aslanova, M.F. Mustamin, Arbitrary l-state solutions of the Klein-Gordon equation with the Manning-Rosen plus a Class of Yukawa potentials Phys. Lett. A 384 (2020) 126372 https://doi.org/10.1016/j.physleta.2020.126372
: A. Maireche, New bound-state solutions of the deformed Klien-Gordon and Shrodinger equations for Manning-Rosen plus a class of Yukawa potential in RNCQM symmetries Journal of Physical Studies 25(4) (2021) 4301 https://doi.org/10.30970/jps.25.4301)
: M. Abu-Shady, T.A. Abdel-Karim and S.Y. Ezz-Alarab, Masses and thermodynamic properties of heavy mesons in the non-relativistic quark model using the Nikiforov-Uvarov method J Egypt Math Soc 27 (2019) 14. https://doi.org/10.1186/s42787-019-0014-0
: R. Rani, S.B. Bhardwaj and F. Chand, Mass Spectra of Heavy and Light Mesons Using Asymptotic Iteration Method Commun. Theor. Phys. 70 (2018) 179 https://doi.org/10.1088/0253-6102/70/2/179
: A. Maireche, Analytical Expressions to Energy Eigenvalues of the Hydrogenic Atoms and the Heavy Light Mesons in the Framework of 3D-NCPS Symmetries Using the Generalized Bopp's Shift Method Bulg. J. Phys. 49 no.3 (2022) 239 https://doi.org/10.55318/bgjp.2022.49.3.239
: K. P. Gnatenko, Composite system in noncommutative space and the equivalence principle Phys. Lett. A 377(43) (2013) 3061 https://doi.org/10.1016/j.physleta.2013.09.036
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Abdelmadjid Maireche
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.