Pressure dependence on Raman spectra of the molecular crystal 4-(benzenesulfonyl)-morpholine

Authors

DOI:

https://doi.org/10.31349/RevMexFis.69.060502

Keywords:

4-(benzenesulfonyl)-morpholine, High-pressure, Spectroscopy studies, DFT calculations

Abstract

The structural and vibrational properties of 4-(benzenesulfonyl)-morpholine, C10H13NO3S, have been studied using multinuclear (1H and 13C) NMR, IR and Raman spectroscopy techniques at pressures up to 3.2 GPa, as well as molecular modeling and vibrational mode assignment using DFT calculations with B3LYP functional and 6-31G (d,p) basis set and potential energy distribution (PED). Experimental and calculated spectra were compared and showed good accuracy. The sample was subjected to high pressure in the range of 0 to 3.2 GPa. The pressure measurements suggest a conformational transition for values around 0.7, 1.7 and 2.5 GPa, which was observed in some spectral regions, mainly in the high energy vibrational bands.

References

Y.-T. Lee, Hydrogen bond effect on the raman spectrum of liquid ethylene carbonate, Journal of Raman spectroscopy 28 (1997) 833–838.

G. V. L. N. Murty, T. R. Seshadri, Raman effect and hydrogen bonds. part vi. chelate compounds: Esters of salicylic acid and their mixtures, Proceedings of the Indian Academy of Sciences, Section A 16 (1942) 244–249.

F. Ya, Z. Jing, X. Da-Peng, The investigation on the pressure-induced phase transition in linoleic acid by in situ raman spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 129 (2014) 143–147.

E. V. Boldyreva, H. Sowa, H. Ahsbahs, S. V. Goryainov, V. V. Chernyshev, V. P. Dmitriev, Y. V. Seryotkin, E. N. Kolesnik, T. P. Shakhtshneider, S. N. Ivashevskaya, et al., Pressure-induced phase transitions in organic molecular crystals: a combination of x-ray single-crystal and powder diffraction, raman and ir-spectroscopy, in: Journal of Physics: Conference Series, volume 121, IOP Publishing,

, p. 022023.

C. Luz-Lima, G. De Sousa, J. A. Lima Jr, F. E. A. Melo, J. Mendes Filho, A. Polian, P. T. C. Freire, High pressure raman spectra of β-form of l-glutamic acid, Vibrational Spectroscopy 58 (2012) 181–187. [6] A. G. Souza Filho, J. L. B. Faria, P. T. C. Freire, A. P. Ayala, J. M. Sasaki, F. E. A. Melo, J. Mendes Filho, E. B. Araujo, J. A. Eiras, Pressure-induced phase transitions in zr-rich pbzr1-xtixo3 ceramics, Journal of Physics: Condensed Matter 13 (2001) 7305.

T. A. de Toledo, T. R. Cunha, J. L. B. de Faria, R. R. F. Bento, P. S. Pizani, Low-temperature and high-pressure raman scattering study of the molecular crystal 2-amino-5-ethyl-1, 3, 4-thiadiazole, Vibrational Spectroscopy 113 (2021) 103209.

B. Y. Shekunov, P. York, Crystallization processes in pharmaceutical technology and drug delivery design, Journal of crystal growth 211 (2000) 122–136.

J. Y. Khoo, U. V. Shah, M. Schaepertoens, D. R. Williams, J. Y. Y. Heng, Process-induced phase transformation of carbamazepine dihydrate to its polymorphic anhydrates, Powder technology 236 (2013) 114–121.

M. Mondelli, V. Bruné, G. Borthagaray, J. Ellena, O. R. Nascimento, C. Q. Leite, A. A. Batista, M. H. Torre, New ni (ii)-sulfonamide complexes: Synthesis, structural characterization and antibacterial properties. x-ray diffraction of [ni (sulfisoxazole) 2 (h2o) 4]· 2h2o and [ni (sulfapyridine) 2], Journal of inorganic biochemistry 102 (2008) 285–292.

S. Alyar, Ü. Ö. Özmen, N. Karacan, O. Şentürk, K. A. Udachin, Tautomeric properties, conformations and structure of 2-hydroxyacetophenone methanesulfonylhydrazone, Journal of Molecular Structure 889 (2008) 144–149.

E. Kremer, G. Facchin, E. Estévez, P. Alborés, E. J. Baran, J. Ellena, M. H. Torre, Copper complexes with heterocyclic sulfonamides: Synthesis, spectroscopic characterization, microbiological and sod-like activities: Crystal structure of [cu (sulfisoxazole) 2 (h2o) 4]· 2h2o, Journal of inorganic biochemistry 100 (2006) 1167–1175.

J. Ellena, E. Kremer, G. Facchin, E. J. Baran, O. R. Nascimento, A. J. Costa-Filho, M. H. Torre, X-ray structure and epr behavior of a new dimeric copper (ii) complex with 4-amino-n-(5-methoxy-2-pyrimidinyl) benzenesulfonamide, Polyhedron 26 (2007) 3277–3285.

A. M. Mansour, Molecular structure and spectroscopic properties of novel manganese (ii) complex with sulfamethazine drug, Journal of Molecular Structure 1035 (2013) 114–123.

J. A. Lainton, M. C. Allen, M. Burton, S. Cameron, T. R. Edwards, G. Harden, R. Hogg, W. Leung, S. Miller, J. J. Morrish, et al., Design and synthesis of a diverse morpholine template library, Journal of Combinatorial Chemistry 5 (2003) 400–407.

J. P. Merrick, D. Moran, L. Radom, An evaluation of harmonic vibrational frequency scale factors, The Journal of Physical Chemistry A 111 (2007) 11683–11700.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical review A 38 (1988) 3098.

C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: The pbe0 model, The Journal of chemical physics 110 (1999) 6158–6170.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. K. K. N. Vreven, K. N. Kudin, J. C. Burant, et al., Gaussian 03, revision c. 02; gaussian, inc.: Wallingford, ct, 2004 (2013).

A. R. Modarresi-Alam, H. A. Amirazizi, H. Bagheri, H.-R. Bijanzadeh, E. Kleinpeter, Dynamic 1h nmr spectroscopic study of the ring inversion in n-sulfonyl morpholines studies on n-s interactions, The Journal of organic chemistry 74 (2009) 4740–4746.

M. H. Jamroz, Vibrational energy distribution analysis veda 4, 2004. [22] M. H. Jamróz, Vibrational energy distribution analysis (veda): scopes and limitations, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 114 (2013) 220–230.

J. Workman Jr, Functional groupings and calculated locations in wavenumbers (cm-1) for ir spectroscopy. handb. org. compd. nir, ir, raman, uv-vis spectra featur. polym. surfactants, 2000.

P. A. Fleury, The effects of soft modes on the structure and properties of materials, Annual Review of Materials Science 6 (1976) 157–180.

H. Shimizu, K. Matsumoto, High-pressure raman study of liquid and molecular crystals at room temperature. 3. chloroform and chloroform-d, The Journal of Physical Chemistry 88 (1984) 2934–2936.

J. Meng, G. Zou, Q. Cui, Z. Zhu, Z. Du, Raman spectra and pressure-induced phase transition in nanocrystalline pbzro3, Solid state communications 91 (1994) 519–521.

R. Taylor, O. Kennard, W. Versichel, The geometry of the n–h...o=c hydrogen bond. 3. hydrogen-bond distances and angles, Acta Crystallographica Section B: Structural Science 40 (1984) 280–288.

G. Klebe, The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands, Journal of molecular biology 237 (1994) 212–235.

T. Okada, K. Komatsu, T. Kawamoto, T. Yamanaka, H. Kagi, Pressure response of raman spectra of water and its implication to the change in hydrogen bond interaction, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 61 (2005) 2423–2427.

Y. Ren, H. Zhang, J. Zhang, X. Cheng, L. Jiang, Z. Chen, H. Dai, High-pressure induced conformational and phase transformations of 1, 4-dioxane probed by raman spectroscopy, Journal of Molecular Structure 1210 (2020) 127987.

W. Häfner, W. Kiefer, Raman spectroscopic investigations on molecular crystals: Pressure and temperature dependence of external phonons in naphthalene-d 8 and anthracene-d 10, The Journal of chemical physics 86 (1987) 4582–4596.

Downloads

Published

2023-11-01

How to Cite

[1]
T. A. de Toledo, E. D. Silva, J. L. Brito de Faria, L. E. da Silva, and P. S. Pizani, “Pressure dependence on Raman spectra of the molecular crystal 4-(benzenesulfonyl)-morpholine”, Rev. Mex. Fís., vol. 69, no. 6 Nov-Dec, pp. 060502 1–, Nov. 2023.