Wheeler-DeWitt canonical quantum gravity in hydrogenoid atoms according to de Broglie-Bohm and the geodesic hypothesis. Einstein’s Quantum Field Equation
DOI:
https://doi.org/10.31349/RevMexFis.70.060701Keywords:
De Broglie Bohm; curvature of space time; metric tensor; general relativity; hydrogen-like atoms; electron trajectory; quantum potential; wave function; numerical methods; geodesics; Lorenz geometry;Abstract
We explore the geodesic hypothesis of orbital trajectories of the electrons in hydrogenoid atoms, in the frame of de Broglie-Bohm quantum theory. It is intended that the space-time can be curved, at very short distances, by the effect of the joint action of the energy content of the atomic system and the contribution of the electric and quantum potentials. The geodesic hypothesis would explain the non-lose of energy in the electron orbital trajectories. So we explore a conception where particles and waves interact in a closed system: the waves guide the particles and the particles generate the spacetime perturbation that acts as a wave, beyond the pilot-wave theory.
We establish the equivalence, in a local neighborhood, between the electron trajectory of an hydrogenoid atom in the Minkowskian space where the de Broglie-Bohm can be cast with its movement in a Lorentzian manifold, according to the concept of metric tangent. Through the geodesic condition and the invariance of the elemental length, we establish a relationship between some components of the metrics. But as the particles in microphysics do not follow the Einstein’s field equation, we consider the 3+1 decomposition according to ADM and the quantization in the Wheeler De Witt theory and with a so-called quantum Einstein field equation, with a decomposition of spacetime into three-dimensional sheets of a spatial character. Then we derive from the moment-energy tensor a further equation between the components of the metrics. It opens the avenue to characterize the metric by an exact solution of the Einstein’s field equations.
References
D. Bohm, A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I. Physical Review, 85 (1951a) 166- 179
D. Bohm, A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. II. Physical Review, 85 (1951b) 180-193
S. Carlip, General Relativity. Oxford University Press, Oxford, 2019
L. de Broglie, Recherches sur la théorie des quanta. Annales de Physique, III(Serie 10), 1925
L. de Broglie, La nouvelle dynamique des quanta. Institute international de Physique SolvayAnnales de Physique, Electrons et photons: 105-132, (1928)
B.S. DeWitt, Quantum theory of gravity. i. the canonical gravity. Phys.Rev., 160 (1967) 1113-1148
D. Dürr and W. Struyve, Quantum Einstein equations. Classical and quantum gravity, 37 (2020) 135002
G. Gómez i Blanch and M. J. Fullana i Alfonso, On geometrodynamics in atomic stationary states. Rev. Mex. Fis. 2019 (2019) 148-158
G. Gómez i Blanch I. Kotsireas I. Gkigkitzis I. Haranas and M.J. Fullana i Alfonso, Space time geometry in the atomic hydrogenoid system. approach to a dust relativistic model from causal quantum mechanics. Rev. Mex. Fis. 2018 (2018) 18-29
M. Socorro J. Guzman, W. Sabido and L.A. Ureña-Lopez, Scalar potentials out of canonical quantum cosmology. International journal of modern physics D, 16 (2007) 641-653
G. Gómez i Blanch, Phd thesis: Varietats lorentzianes en la representacio dels estats estacionaris dels ‘atoms hidrogenoides en la teoria de de broglie-bohm. uns models heurístics. Universitat Politècnica de València, 2021
P.R. Holland, The Quantum Theory of motion. (Cambridge University Press, 1993) p. 67
D. Kramer, M. Stephani, H. MacCallung, and E. Herlt, Exact solutions of Einstein’s field equations. Cambridge University Press, p. 222, 1980
A. Lichnerowicz, Elementos de cálculo tensorial. Aguilar, S.A.- Espasa- Calpe, S.A., p. 121, 1968.
C. Maes K. Meerts and W. Struyve, Wave mechanics for gravity with point particles. Clas. Quantum Grav., (38) (2021) 175003
R. Arnowitt, S. Deser and C. Misner, The dynamics of General Relativity. arXiv:gr-qc]0405109v1 19 May 2004, 2004
C. Rovelli, Notes for a brief history of quantum gravity. arXiv:gr-qc/0006061 v3 23 Jan 2001, 2000
A. Shojai and F. Shojai, Constraint algebra and equations of motion in the Bohmian interpretation of quantum gravity. Pramana 58, pages 13-19, 2004
F. Shojai and M. Golshani, On the general covariance in Bohmian quantum gravity. Int. J. Mod. Phhys. A 13 (1998) 2135-2144, arXiv:gr-qc/9903047
J. Socorro and M. D’Oleire, Inflation from supersymetric quantum cosmology. Physical Review, D (2010) 044008
J. Socorro and O. E. Nuñez, Scalar potentials with multi-scalar fields from quantum cosmology and supersymetric quantum mechanics. The European Physical Journal Plus, 132(168), 2017
J. Socorro and P. A. Rodriguez, Open questions in Cosmology. Chapter 9. Quinton Potential from Quantum Anisotropy Cosmologycal Models. Intech open science, p. 132-168, 2012
R. Tumulka, The “unromantic pictures” of quantum theory. J. Physics, A (2006) 3245-3273
C. Misner K. Thorne J. Wheeler, Gravitation. (Pincenton Universty Press, New Yersey, 2017)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Màrius Josep Fullana i Alfonso, G. Gómez i Blanch
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.