Structural and dielectric characterization of Potassium diphosphate/Hydroxyapatite ceramic biocomposite

Authors

  • Maritza Iveth Pérez Valverde Instituto de Física-BUAP
  • Osmany García Zaldívar Universidad de La Habana
  • María Eugenia Mendoza Álvarez Instituto de Física -BUAP

DOI:

https://doi.org/10.31349/RevMexFis.70.021001

Keywords:

Composites, Apatite, proton hopping, Impedance

Abstract

We study the KH2PO4 (KDP) /Ca10(PO4)6(OH)2 (HA) biocomposite to evaluate its electrical conductivity. It was prepared by manual grinding on a 1:3 molar ratio. Studies by X-ray powder diffraction and Raman spectroscopy show a variation in the volume of the unit cell between KDP and HA and the disappearance of bands associated with KDP. Impedance spectroscopy was studied over a range of temperatures (25-80 ºC) and frequencies from 10 Hz to 1 MHz. It was found that the bulk resistance of the composite is higher in pure KDP. Using the Jonscher empirical expression suggest that the ionic hopping conduction mechanism is responsible for the conductivity behavior with hopping frequency of 1.21 x104 Rad at 80ºC. 

References

K.L. Han, G.J. Zhao, 1st ed. Hydrogen Bonding and Transfer in the Excited State (John Wiley & Sons, Ltd, Chichester, UK, 2010).

G.J. Zhao, K.L. Han, Hydrogen bonding in the electronic excited state, Acc Chem Res. 45 (2012) 404. https://doi.org/10.1021/ar200135h.

J.E. Diosa, R.A. Vargas, I. Albinsson, B.E. Mellander, Dielectric relaxation of KH2PO4 above room temperature, Phys. Status Solidi B 241 (2004) 1369. https://doi.org/10.1002/pssb.200302000.

T. Miyoshi, H. Mashiyama, T. Asahi, H. Kimura, Y. Noda, Single-crystal neutron structural analyses of potassium dihydrogen phosphate and potassium dideuterium phosphate, J Phys. Soc Japan. 80 (2011) 1. https://doi.org/10.1143/JPSJ.80.044709.

G.A. Samara, The effects of deuteration on the static ferroelectric properties of KH2PO4 (KDP), Ferroelectrics. 5 (1973) 25. https://doi.org/https://doi.org/10.1080/00150197308235776.

J.E. Tibballs, R.J. Nelmes, The crystal structure of tetragonal KH2PO4 and KD2PO4 as a function of temperature and pressure, J. Phys. C 15 (1982) 59 DOI 10.1088/0022-3719/15/1/005

J.C. Slater, Theory of the transition in KH2PO4, J. Chem. Phys. 9 (1941) 16. https://doi.org/10.1063/1.1750821.

M. O’Keeffe, C.T. Perrino, Proton conductivity in pure and doped KH2PO4, J. Phys. Chem. Solids. 28 (1967) 211. https://doi.org/10.1016/0022-3697(67)90110-2.

L.B. Harris, G.J. Vella, Direct current conduction in ammonium and potassium dihydrogen phosphate, J Chem Phys. 58 (1973) 4550. https://doi.org/10.1063/1.1679018.

F. Momma, K. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272.

https://doi.org/10.1107/S0021889811038970.

M.I. Pérez-Valverde, J.J. Gervacio-Arciniega, J.M. Siqueiros, M.E. Mendoza, Dielectric and structural characterization and effective piezoelectric coefficient of KDP/p-Benzoquinone ceramic composites, Ceram. Int. 45 (2019) 9986. https://doi.org/10.1016/j.ceramint.2019.02.042.

B. Yilmaz, A.Z. Alshemary, Z. Evis, Co-doped hydroxyapatites as potential materials for biomedical applications, Microchem. J. 144 (2019) 443. https://doi.org/10.1016/j.microc.2018.10.007.

L. Veselinović, L. Karanović, Z. Stojanović, I. Bračko, S. Marković, N. Ignjatović, D. Uskoković, Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing, J. Appl. Crystallogr. 43 (2010) 320. https://doi.org/10.1107/S0021889809051395.

J.P. Gittings, C.R. Bowen, A.C.E. Dent, I.G. Turner, F.R. Baxter, J.B. Chaudhuri, Electrical characterization of hydroxyapatite-based bioceramics, Acta Biomater. 5 (2009) 743. https://doi.org/10.1016/j.actbio.2008.08.012.

T. Ikoma, A. Yamazaki, S. Nakamura, M. Akao, Preparation and Structure Refinement of Monoclinic Hydroxyapatite, J. Solid State Chem. 144 (1999) 272. https://doi.org/10.1006/jssc.1998.8120.

G. Ma, X.Y. Liu, Hydroxyapatite: Hexagonal or monoclinic?, Cryst. Growth Des. 9 (2009) 2991. https://doi.org/10.1021/cg900156w.

T. Yamashita, K. Kitagaki, K. Umegaki, Thermal Instability and proton conductivity of ceramic hydroxyapatite at high temperatures, J. Am. Ceram. Soc. 78 (1995) 1191.

https://doi.org/10.1111/j.1151-2916.1995.tb08468.x

M.S. Khalil, H.H. Beheri, W.I. Abdel Fattah, Structural and electrical properties of zirconia/hydroxyapatite porous composites, Ceram. Int. 28 (2002) 451. https://doi.org/10.1016/S0272-8842(01)00118-3.

K.L. Han, G.J. Zhao, 1st ed. Hydrogen Bonding and Transfer in the Excited State (John Wiley & Sons, Ltd, Chichester, UK, 2010).

G.J. Zhao, K.L. Han, Hydrogen bonding in the electronic excited state, Acc Chem Res. 45 (2012) 404. https://doi.org/10.1021/ar200135h.

J.E. Diosa, R.A. Vargas, I. Albinsson, B.E. Mellander, Dielectric relaxation of KH2PO4 above room temperature, Phys. Status Solidi B 241 (2004) 1369. https://doi.org/10.1002/pssb.200302000.

T. Miyoshi, H. Mashiyama, T. Asahi, H. Kimura, Y. Noda, Single-crystal neutron structural analyses of potassium dihydrogen phosphate and potassium dideuterium phosphate, J Phys. Soc Japan. 80 (2011) 1. https://doi.org/10.1143/JPSJ.80.044709.

G.A. Samara, The effects of deuteration on the static ferroelectric properties of KH2PO4 (KDP), Ferroelectrics. 5 (1973) 25. https://doi.org/https://doi.org/10.1080/00150197308235776.

J.E. Tibballs, R.J. Nelmes, The crystal structure of tetragonal KH2PO4 and KD2PO4 as a function of temperature and pressure, J. Phys. C 15 (1982) 59 DOI 10.1088/0022-3719/15/1/005

J.C. Slater, Theory of the transition in KH2PO4, J. Chem. Phys. 9 (1941) 16. https://doi.org/10.1063/1.1750821.

M. O’Keeffe, C.T. Perrino, Proton conductivity in pure and doped KH2PO4, J. Phys. Chem. Solids. 28 (1967) 211. https://doi.org/10.1016/0022-3697(67)90110-2.

L.B. Harris, G.J. Vella, Direct current conduction in ammonium and potassium dihydrogen phosphate, J Chem Phys. 58 (1973) 4550. https://doi.org/10.1063/1.1679018.

F. Momma, K. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272.

https://doi.org/10.1107/S0021889811038970.

M.I. Pérez-Valverde, J.J. Gervacio-Arciniega, J.M. Siqueiros, M.E. Mendoza, Dielectric and structural characterization and effective piezoelectric coefficient of KDP/p-Benzoquinone ceramic composites, Ceram. Int. 45 (2019) 9986. https://doi.org/10.1016/j.ceramint.2019.02.042.

B. Yilmaz, A.Z. Alshemary, Z. Evis, Co-doped hydroxyapatites as potential materials for biomedical applications, Microchem. J. 144 (2019) 443. https://doi.org/10.1016/j.microc.2018.10.007.

L. Veselinović, L. Karanović, Z. Stojanović, I. Bračko, S. Marković, N. Ignjatović, D. Uskoković, Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing, J. Appl. Crystallogr. 43 (2010) 320. https://doi.org/10.1107/S0021889809051395.

J.P. Gittings, C.R. Bowen, A.C.E. Dent, I.G. Turner, F.R. Baxter, J.B. Chaudhuri, Electrical characterization of hydroxyapatite-based bioceramics, Acta Biomater. 5 (2009) 743. https://doi.org/10.1016/j.actbio.2008.08.012.

T. Ikoma, A. Yamazaki, S. Nakamura, M. Akao, Preparation and Structure Refinement of Monoclinic Hydroxyapatite, J. Solid State Chem. 144 (1999) 272. https://doi.org/10.1006/jssc.1998.8120.

G. Ma, X.Y. Liu, Hydroxyapatite: Hexagonal or monoclinic?, Cryst. Growth Des. 9 (2009) 2991. https://doi.org/10.1021/cg900156w.

T. Yamashita, K. Kitagaki, K. Umegaki, Thermal Instability and proton conductivity of ceramic hydroxyapatite at high temperatures, J. Am. Ceram. Soc. 78 (1995) 1191.

https://doi.org/10.1111/j.1151-2916.1995.tb08468.x

M.S. Khalil, H.H. Beheri, W.I. Abdel Fattah, Structural and electrical properties of zirconia/hydroxyapatite porous composites, Ceram. Int. 28 (2002) 451. https://doi.org/10.1016/S0272-8842(01)00118-3.

M. Nagai, T. Nishino, Surface conduction of porous hydroxyapatite ceramics at elevated temperatures, Solid State Ion. 28–30 (1988) 1456. https://doi.org/10.1016/0167-2738(88)90403-1.

A.K. Sánchez-Hernández, J. Martínez-Juárez, J.J. Gervacio-Arciniega, R. Silva-González, M.J. Robles-Águila, Effect of ultrasound irradiation on the synthesis of hydroxyapatite/titanium oxide nanocomposites, Crystals 10 (2020) 1. https://doi.org/10.3390/cryst10110959.

R. Pérez-Solis, J.J. Gervacio-Arciniega, B. Joseph, M.E. Mendoza, A. Moreno, Synthesis and characterization of a monoclinic crystalline phase of hydroxyapatite by synchrotron X-ray powder diffraction and piezoresponse force microscopy, Crystals 8 (2018). https://doi.org/10.3390/cryst8120458.

A.F. Khan, M. Awais, A.S. Khan, S. Tabassum, A.A. Chaudhry, I.U. Rehman, Raman spectroscopy of natural bone and synthetic apatites, Appl. Spectrosc. Rev. 48 (2013) 329. https://doi.org/10.1080/05704928.2012.721107.

G. Penel, G. Leroy, C. Rey, E. Bres, MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites, Calcif. Tissue Int. 63 (1998) 475. https://doi.org/10.1007/s002239900561.

H. Ettoumi, Y. Gao, M. Toumi, T. Mhiri, Thermal analysis, Raman spectroscopy and complex impedance analysis of Cu2+-doped KDP, Ionics 19 (2013) 1067. https://doi.org/10.1007/s11581-013-0926-x.

P. Pettersson, A. Barth, Correlations between the structure and the vibrational spectrum of the phosphate group. Implications for the analysis of an important functional group in phosphoproteins, RSC Adv. 10 (2020) 4715. https://doi.org/10.1039/c9ra10366j.

E.M. Alkoy, A. Berksoy-Yavuz, Electrical properties and impedance spectroscopy of pure and copper-oxide-added potassium sodium niobate ceramics, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 (2012) 2121. https://doi.org/10.1109/TUFFC.2012.2438.

A.K. Dubey, K. Kakimoto, A. Obata, T. Kasuga, Enhanced polarization of hydroxyapatite using the design concept of functionally graded materials with sodium potassium niobate, RSC Adv. 4 (2014) 24601. https://doi.org/10.1039/c4ra02329c.

I.M. Hodge, M.D. Ingram, A.R. West, Impedance and modulus spectroscopy of polycrystalline solid electrolytes, J. Electroanal. Chem. 74 (1976) 125. https://doi.org/10.1016/S0022-0728(76)80229-X.

B. Singh, S. Kumar, B. Basu, R. Gupta, Conductivity studies of silver-, potassium-, and magnesium-doped hydroxyapatite, Int. J. Appl. Ceram. Technol. 12 (2015) 319. https://doi.org/10.1111/ijac.12167.

B. Harihara Venkataraman, K.B.R. Varma, Frequency-dependent dielectric characteristics of ferroelectric SrBi2Nb2O9 ceramics, Solid State Ion. 167 (2004) 197. https://doi.org/10.1016/j.ssi.2003.12.020.

J.P. Gittings, C.R. Bowen, I.G. Turner, F. Baxter, J. Chaudhuri, Characterisation of ferroelectric-calcium phosphate composites and ceramics, J. Eur. Ceram. Soc. 27 (2007) 4187. https://doi.org/10.1016/j.jeurceramsoc.2007.02.120.

K.P. Tank, B. V. Jogiya, D.K. Kanchan, M.J. Joshi, Dielectric properties of pure and strontium doped nano- hydroxyapatite, Solid State Phenom. 209 (2014) 151. https://doi.org/10.4028/www.scientific.net/SSP.209.151.

P. Lunkenheimer, H. Rall, J. Alkemper, H. Fuess, R. Böhmer, A. Loidl, Ionic motion in bioactive ceramics investigated by dielectric spectroscopy, Solid State Ion. 81 (1995) 129. https://doi.org/10.1016/0167-2738(95)00170-B.

C.C. Silva, M.P.F. Graça, M.A. Valente, A.S.B. Sombra, AC and DC conductivity analysis of hydroxyapatite and titanium calcium phosphate formed by dry ball milling, J. Non Cryst. Solids 352 (2006) 1490. https://doi.org/10.1016/j.jnoncrysol.2006.01.028.

G. Garcia-Belmonte, V. Kytin, T. Dittrich, J. Bisquert, Effect of humidity on the ac conductivity of nanoporous TiO2, J. Appl. Phys. 94 (2003) 5261. https://doi.org/10.1063/1.1610805.

A.K. Jonscher, Dielectric relaxation in solids. 1st ed, (Chelsea Dielectric, London. 12, 1983) pp. R57–R70.

B. Singh, S. Kumar, B. Basu, R. Gupta, Enhanced ionic conduction in hydroxyapatites, Mater Lett. 95 (2013) 100. https://doi.org/10.1016/j.matlet.2012.12.074.

S.R. Elliott, A theory of a.c. conduction in chalcogenide glasses, Philos. Mag. 36 (1977) 1291. https://doi.org/10.1080/14786437708238517.

K.K. Bamzai, S. Suri, V. Singh, Synthesis, characterization, thermal and dielectric properties of pure and cadmium doped calcium hydrogen phosphate, Mater. Chem. Phys. 135 (2012) 158. https://doi.org/10.1016/j.matchemphys.2012.04.040.

A.K. Jonscher, Dielectric relaxation in solids, J Phys D 32 (1999) R57. https://doi.org/10.1088/0022-3727/32/14/201.

A. Das, D. Pamu, A comprehensive review on electrical properties of hydroxyapatite based ceramic composites, Mat. Sci. Eng. C. 101 (2019) 539. https://doi.org/10.1016/j.msec.2019.03.077.

F.M. Souza, Electrical Conductivity in the KDP, ADP, and K1-x (NH4)xH2PO4 crystals, Mat. Res. 20 (2017) 532. https://doi.org/10.1590/1980-5373-MR-2016-0603.

Downloads

Published

2024-03-01

How to Cite

[1]
M. I. Pérez Valverde, O. García Zaldívar, and M. E. Mendoza Álvarez, “Structural and dielectric characterization of Potassium diphosphate/Hydroxyapatite ceramic biocomposite ”, Rev. Mex. Fís., vol. 70, no. 2 Mar-Apr, pp. 021001 1–, Mar. 2024.