Effect of slide burnishing on corrosion potential in ASTM A-36 steel
DOI:
https://doi.org/10.31349/RevMexFis.69.061002Keywords:
Potential, tafel, corrosion, burnishingAbstract
This study investigates the corrosion potential of ASTM A-36 steel after slide burnishing using different applied forces. Turned samples of ASTM A-36 steel were subjected to slide burnishing surface treatment. The burnishing process was carried out with forces of 150 N, 300 N, and 450 N, at a travel speed of 100 mm/min. The effects of burnishing on the chemical composition of the material were analyzed using Grazing Incidence X-ray Diffraction and X-ray photoelectron spectroscopy, which indicated no changes in the chemical composition of the material. Corrosion potential measurements were performed using the Tafel test. The results showed that as the burnishing force increased, the corrosion potential shifted to lower values. Additionally, roughness analysis suggested that the change in corrosion potential was attributed to plastic deformation caused by the burnishing process. The increased mechanical work exerted on the material during burnishing may be the underlying reason for the observed shift towards lower corrosion potentials with higher applied forces.
References
P. Pa, Continuous finishing processes using a combination of burnishing and electrochemical finishing on bore surfaces, Int J Adv
Manuf Techno 49 (2010) 147, https://doi.org/10.1007/s00170-009-2386-z
S. Kumar, et al., Effect of processing condition on abrasive flow machining process: A review, Materials Today: Proceedings (2023),
https://doi.org/10.1016/j.matpr.2022.12.237
J. Maximov, et al., Effects of Heat Treatment and Diamond Burnishing on Fatigue Behaviour and Corrosion Resistance of AISI 304
Austenitic Stainless Steel, Applied Sciences 13 (2023), https://doi.org/10.3390/app13042570
S. Attabi, et al., Mechanical and wear behaviors of 316L stainless steel after ball burnishing treatment, Journal of Materials Research
and Technology 15 (2021) 3255, https://doi.org/10.1016/j.jmrt.2021.09.081
A. Márquez-Herrera, et al., Calentador de sustratos compacto y de bajo costo para tratamiento térmico in situ de películas delgadas
depositadas por rf-sputtering, Revista mexicana de física 56 (2010) 85
L. Lacalle, et al., The effect of ball burnishing on heat-treated steel and Inconel 718 milled surfaces, The International Journal of
Advanced Manufacturing Technology 32 (2007) 958, https://doi.org/10.1007/s00170-005-0402-5
A. Toloei, V. Stoilov, and D. Northwood, The effect of different surface topographies on the corrosion behaviour of nickel, WIT
Transactions on Engineering Science 77 (2013) 193, https://doi.org/10.2495/MC130171
L. Abosrra, et al., Corrosion of mild steel and 316L austenitic stainless steel with different surface roughness in sodium chloride saline
solutions, Corros.: Mater. Perf. Cathodic Prot. (2009) 107, https://doi.org/10.2495/ECOR090161
L. Jinlong, L. Hongyun, and L. tongxiang, Investigation of microstructure and corrosion behavior of burnished aluminum alloy by TEM,
EWF, XPS and EIS techniques, Materials Research Bulletin 83 (2016) 148, https://doi.org/10.1016/j.materresbull.2016.05.013
Z. D. Kadhim, M. A. Abdulrazzaq, and S. Q. AL-Shahrabalee, Burnishing Operation for Corrosion Resistance Improvement of AISI
Carbon Steel, European Journal of Engineering and Technology Research 3 (2018) 21, https://doi.org/10.24018/ejeng.2018.3.6.749
A. Saldaña-Robles, et al., Influence of ball-burnishing on roughness, hardness and corrosion resistance of AISI 1045 steel, Surface and
Coatings Technology 339 (2018) 191, https://doi.org/10.1016/j.surfcoat.2018.02.013
Z. Pu, et al., Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy,
Corrosion Science 57 (2012) 192, https://doi.org/10.1016/j.corsci.2011.12.018
U. Al-Qawabeha, A. E. Al-Rawajfeh, and E. Al-Shamaileh, Influence of roller burnishing on surface properties and corrosion resistance
in steel, Anti-Corrosion Methods and Materials 56 (2009) 261, http://dx.doi.org/10.1108/00035590910989552
D. Silva-Álvarez, et al., Improving the surface integrity of the CoCrMo alloy by the ball burnishing technique, Journal of Materials
Research and Technology 9 (2020) 7592, https://doi.org/10.1016/j.jmrt.2020.05.038
S. Hiromoto, Corrosion of metallic biomaterials, pp. 131–152 (Elsevier, 2019), https://doi.org/10.1016/B978-0-08-102666-3.00004-3.
X. Sun, D. Sun, and L. Yang, Corrosion monitoring under cathodic protection conditions using multielectrode array sensors, In
Techniques for Corrosion Monitoring, pp. 539–570 (Elsevier, 2021), https://doi.org/10.1016/B978-0-08-103003-5.00026-6.
A. Merkys, et al., COD:: CIF:: Parser: an error-correcting CIF parser for the Perl language, Journal of applied crystallography 49
(2016) 292, https://doi.org/10.1107/S1600576715022396
D. Ulutan and T. Ozel, Machining induced surface integrity in titanium and nickel alloys: A review, International Journal of Machine
Tools and Manufacture 51 (2011) 250, https://doi.org/10.1016/j.ijmachtools.2010.11.003
P. Zhang, et al., Effect of turning-induced initial roughness level on surface roughness and residual stress improvements in subsequent burnishing, Archives of Civil and Mechanical Engineering 20 (2020) 1, https://doi.org/10.1007/s43452-020-00083-5
M. Solórzano, et al., Structural characterization, dielectric, and magnetic properties of Ti-doped YFeO 3 multiferroic compound, Journal of Materials Science: Materials in Electronics 31 (2020) 14478, https://doi.org/10.1007/s10854-020-04007-0
N. X. ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and
Technology, Gaithersburg MD, 20899 (2000), https://doi.org/10.18434/T4T88K
X. Li, et al., Surface Integrity and Corrosion Performance of Biomedical Magnesium-Calcium Alloy Processed by Hybrid Dry
Cutting-Finish Burnishing, Journal of Materials Engineering and Performance 30 (2021) 2462, https://doi.org/10.1007/s11665-021-05596-w
X. Lazkano, et al., Roughness maps to determine the optimum process window parameters in face milling, International Journal of
Mechanical Sciences 221 (2022) 107191, https://doi.org/10.1016/j.ijmecsci.2022.107191
O. Zurita, V. Di-Graci, and M. Capace, Effect of cutting parameters on surface roughness in turning of annealed AISI-1020 steel, Revista
Facultad de Ingeniería 27 (2018) 121, https://doi.org/10.19053/01211129.v27.n47.2018.7928
B. S. Bokstein, M. I. Mendelev, and D. J. Srolovitz, Thermodynamics and kinetics in materials science: a short course (OUP Oxford, 2005).
A. A. García-Granada, et al., Ball-burnishing effect on deep residual stress on AISI 1038 and AA2017-T4, Materials and Manufacturing
Processes 32 (2017) 1279, https://doi.org/10.1080/10426914.2017.1317351
G. Wang, et al., Effect of residual stress and microstructure on corrosion resistance of carburised 18CrNiMo7-6 steel, Anti-Corrosion
Methods and Materials 67 (2020) 357, https://doi.org/10.1108/ACMM-02-2020-2260
Y.-J. Seo, Methodological Consideration on the Prediction of Electrochemical Mechanical Polishing Process Parameters by Monitoring
of Electrochemical Characteristics of Copper Surface, Journal of Electrochemical Science and Technology 11 (2020) 346, https:
//doi.org/10.33961/jecst.2019.00640
J. Jeong and H.-C. Shin, In-Depth Analysis of Coulombic Efficiency of Zinc-Air Secondary Batteries, Journal of Electrochemical
Science and Technology 11 (2020) 26, https://doi.org/10.33961/jecst.2019.00339
L. Jinlong and L. Hongyun, Effect of surface burnishing on texture and corrosion behavior of 2024 aluminum alloy, Surface and
Coatings Technology 235 (2013) 513, http://dx.doi.org/10.1016/j.surfcoat.2013.07.071
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 A. Saldaña-Robles, M. Zapata-Torres, J. Moreno-Palmerin, Alfredo Márquez-Herrera
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.