Effect of slide burnishing on corrosion potential in ASTM A-36 steel

Authors

  • A. Saldaña-Robles Departamento de Ingeniería Mecánica Agrícola, DICIVA, Universidad de Guanajuato
  • M. Zapata-Torres Instituto Politecnico Nacional, CICATA Unidad Legaria
  • J. Moreno-Palmerin Division de Ingenierías, Campus Guanajuato, Universidad de Guanajuato
  • Alfredo Márquez-Herrera Departamento de Ingeniería Mecánica Agrícola, DICIVA, Universidad de Guanajuato, http://orcid.org/0000-0002-7660-3575

DOI:

https://doi.org/10.31349/RevMexFis.69.061002

Keywords:

Potential, tafel, corrosion, burnishing

Abstract

This study investigates the corrosion potential of ASTM A-36 steel after slide burnishing using different applied forces. Turned samples of ASTM A-36 steel were subjected to slide burnishing surface treatment. The burnishing process was carried out with forces of 150 N, 300 N, and 450 N, at a travel speed of 100 mm/min. The effects of burnishing on the chemical composition of the material were analyzed using Grazing Incidence X-ray Diffraction and X-ray photoelectron spectroscopy, which indicated no changes in the chemical composition of the material. Corrosion potential measurements were performed using the Tafel test. The results showed that as the burnishing force increased, the corrosion potential shifted to lower values. Additionally, roughness analysis suggested that the change in corrosion potential was attributed to plastic deformation caused by the burnishing process. The increased mechanical work exerted on the material during burnishing may be the underlying reason for the observed shift towards lower corrosion potentials with higher applied forces.

References

P. Pa, Continuous finishing processes using a combination of burnishing and electrochemical finishing on bore surfaces, Int J Adv

Manuf Techno 49 (2010) 147, https://doi.org/10.1007/s00170-009-2386-z

S. Kumar, et al., Effect of processing condition on abrasive flow machining process: A review, Materials Today: Proceedings (2023),

https://doi.org/10.1016/j.matpr.2022.12.237

J. Maximov, et al., Effects of Heat Treatment and Diamond Burnishing on Fatigue Behaviour and Corrosion Resistance of AISI 304

Austenitic Stainless Steel, Applied Sciences 13 (2023), https://doi.org/10.3390/app13042570

S. Attabi, et al., Mechanical and wear behaviors of 316L stainless steel after ball burnishing treatment, Journal of Materials Research

and Technology 15 (2021) 3255, https://doi.org/10.1016/j.jmrt.2021.09.081

A. Márquez-Herrera, et al., Calentador de sustratos compacto y de bajo costo para tratamiento térmico in situ de películas delgadas

depositadas por rf-sputtering, Revista mexicana de física 56 (2010) 85

L. Lacalle, et al., The effect of ball burnishing on heat-treated steel and Inconel 718 milled surfaces, The International Journal of

Advanced Manufacturing Technology 32 (2007) 958, https://doi.org/10.1007/s00170-005-0402-5

A. Toloei, V. Stoilov, and D. Northwood, The effect of different surface topographies on the corrosion behaviour of nickel, WIT

Transactions on Engineering Science 77 (2013) 193, https://doi.org/10.2495/MC130171

L. Abosrra, et al., Corrosion of mild steel and 316L austenitic stainless steel with different surface roughness in sodium chloride saline

solutions, Corros.: Mater. Perf. Cathodic Prot. (2009) 107, https://doi.org/10.2495/ECOR090161

L. Jinlong, L. Hongyun, and L. tongxiang, Investigation of microstructure and corrosion behavior of burnished aluminum alloy by TEM,

EWF, XPS and EIS techniques, Materials Research Bulletin 83 (2016) 148, https://doi.org/10.1016/j.materresbull.2016.05.013

Z. D. Kadhim, M. A. Abdulrazzaq, and S. Q. AL-Shahrabalee, Burnishing Operation for Corrosion Resistance Improvement of AISI

Carbon Steel, European Journal of Engineering and Technology Research 3 (2018) 21, https://doi.org/10.24018/ejeng.2018.3.6.749

A. Saldaña-Robles, et al., Influence of ball-burnishing on roughness, hardness and corrosion resistance of AISI 1045 steel, Surface and

Coatings Technology 339 (2018) 191, https://doi.org/10.1016/j.surfcoat.2018.02.013

Z. Pu, et al., Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy,

Corrosion Science 57 (2012) 192, https://doi.org/10.1016/j.corsci.2011.12.018

U. Al-Qawabeha, A. E. Al-Rawajfeh, and E. Al-Shamaileh, Influence of roller burnishing on surface properties and corrosion resistance

in steel, Anti-Corrosion Methods and Materials 56 (2009) 261, http://dx.doi.org/10.1108/00035590910989552

D. Silva-Álvarez, et al., Improving the surface integrity of the CoCrMo alloy by the ball burnishing technique, Journal of Materials

Research and Technology 9 (2020) 7592, https://doi.org/10.1016/j.jmrt.2020.05.038

S. Hiromoto, Corrosion of metallic biomaterials, pp. 131–152 (Elsevier, 2019), https://doi.org/10.1016/B978-0-08-102666-3.00004-3.

X. Sun, D. Sun, and L. Yang, Corrosion monitoring under cathodic protection conditions using multielectrode array sensors, In

Techniques for Corrosion Monitoring, pp. 539–570 (Elsevier, 2021), https://doi.org/10.1016/B978-0-08-103003-5.00026-6.

A. Merkys, et al., COD:: CIF:: Parser: an error-correcting CIF parser for the Perl language, Journal of applied crystallography 49

(2016) 292, https://doi.org/10.1107/S1600576715022396

D. Ulutan and T. Ozel, Machining induced surface integrity in titanium and nickel alloys: A review, International Journal of Machine

Tools and Manufacture 51 (2011) 250, https://doi.org/10.1016/j.ijmachtools.2010.11.003

P. Zhang, et al., Effect of turning-induced initial roughness level on surface roughness and residual stress improvements in subsequent burnishing, Archives of Civil and Mechanical Engineering 20 (2020) 1, https://doi.org/10.1007/s43452-020-00083-5

M. Solórzano, et al., Structural characterization, dielectric, and magnetic properties of Ti-doped YFeO 3 multiferroic compound, Journal of Materials Science: Materials in Electronics 31 (2020) 14478, https://doi.org/10.1007/s10854-020-04007-0

N. X. ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and

Technology, Gaithersburg MD, 20899 (2000), https://doi.org/10.18434/T4T88K

X. Li, et al., Surface Integrity and Corrosion Performance of Biomedical Magnesium-Calcium Alloy Processed by Hybrid Dry

Cutting-Finish Burnishing, Journal of Materials Engineering and Performance 30 (2021) 2462, https://doi.org/10.1007/s11665-021-05596-w

X. Lazkano, et al., Roughness maps to determine the optimum process window parameters in face milling, International Journal of

Mechanical Sciences 221 (2022) 107191, https://doi.org/10.1016/j.ijmecsci.2022.107191

O. Zurita, V. Di-Graci, and M. Capace, Effect of cutting parameters on surface roughness in turning of annealed AISI-1020 steel, Revista

Facultad de Ingeniería 27 (2018) 121, https://doi.org/10.19053/01211129.v27.n47.2018.7928

B. S. Bokstein, M. I. Mendelev, and D. J. Srolovitz, Thermodynamics and kinetics in materials science: a short course (OUP Oxford, 2005).

A. A. García-Granada, et al., Ball-burnishing effect on deep residual stress on AISI 1038 and AA2017-T4, Materials and Manufacturing

Processes 32 (2017) 1279, https://doi.org/10.1080/10426914.2017.1317351

G. Wang, et al., Effect of residual stress and microstructure on corrosion resistance of carburised 18CrNiMo7-6 steel, Anti-Corrosion

Methods and Materials 67 (2020) 357, https://doi.org/10.1108/ACMM-02-2020-2260

Y.-J. Seo, Methodological Consideration on the Prediction of Electrochemical Mechanical Polishing Process Parameters by Monitoring

of Electrochemical Characteristics of Copper Surface, Journal of Electrochemical Science and Technology 11 (2020) 346, https:

//doi.org/10.33961/jecst.2019.00640

J. Jeong and H.-C. Shin, In-Depth Analysis of Coulombic Efficiency of Zinc-Air Secondary Batteries, Journal of Electrochemical

Science and Technology 11 (2020) 26, https://doi.org/10.33961/jecst.2019.00339

L. Jinlong and L. Hongyun, Effect of surface burnishing on texture and corrosion behavior of 2024 aluminum alloy, Surface and

Coatings Technology 235 (2013) 513, http://dx.doi.org/10.1016/j.surfcoat.2013.07.071

Downloads

Published

2023-11-01

How to Cite

[1]
A. Saldaña-Robles, M. Zapata-Torres, J. Moreno-Palmerin, and A. Márquez-Herrera, “Effect of slide burnishing on corrosion potential in ASTM A-36 steel”, Rev. Mex. Fís., vol. 69, no. 6 Nov-Dec, pp. 061002 1–, Nov. 2023.