Light refraction in the earth’s atmosphere II. Inferior mirages: regions for images and objects observation

Authors

  • Alicia Cruzado Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata
  • A. Cesanelli Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata
  • C. Alejandro Paola Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata

DOI:

https://doi.org/10.31349/RevMexFis.69.061303

Keywords:

Planetary atmospheres; light refraction; inferior mirages; analytic expression

Abstract

In the present work, we analyze the different regions that are configured in a vertical plane for the visualization of the inferior mirage phenomenon. To achieve our goal, we take advantage of a methodology that we have previously developed to analytically obtain the path taken by any ray emerging from a point object, explicitly considering the atmosphere’s behavior near the surface. By means of this procedure we have reached analytical expressions, dependent on measurable temperature values, to delimit the observation regions in which it would be possible to see only objects, only images, both simultaneously, or none of them. From the expressions obtained, we study how these regions are distributed under different atmospheric conditions. The results obtained show that our methodology allow to predict the position (distance from the object and height from the ground) at which an observer should be located to observe the phenomenon, knowing the values of the air temperature at three different heights in the microlayer.

References

C. Ahrens, Meteorology Today: An Introduction to Weather, Climate, and the Environment. (International student edition. Brooks/Cole, Cengage Learning, 2009). pp. 621

M. Berger, T. Trout, and N. Levit, Ray Tracing Mirages. IEEE Comput. Graph. App. 10(5) (1990) 36 https://doi.org/10.1109/38.55151

J. Evans, Simple forms for equations of rays in gradient-index lenses, Am. J. Phys. 58 (1980) 773 https://doi.org/10. 1119/1.16357

J. Evans and J. Rosenquist, F = ma optics, Am. J. Phys. 54 (1986) 876, https://doi.org/10.1119/1.14861

A. B. Fraser, Simple solution for obtaining a temperature profile from the inferior mirage. Appl Opt. 18(11) (1979) 1724 https://doi.org/10.1364/AO.18.001724

D. Gutierrez, F. J. Seron, A. Munoz and O. Anson, Simulation of atmospheric phenomena, Comput. Graph. 30(6)) (2006) 994 https://doi.org/10.1016/j.cag.2006.05.002

E. Khular, K. Thyagarajan and A. K. Ghatak, A note on mirage formation. Am. J. Phys. 45 (1977) 90 https://doi.org/10.1119/1.10919

W. H. Lehn and J. S. Morrish, A Three-Parameter Inferior Mirage Model for Optical Sensing of Surface Layer Temperature Profiles. IEEE Trans. Geosci. Remote Sens. GE-24(6) (1986) 940 https://doi.org/10.1109/TGRS.1986.289710

P. D. Noerdlinger, Atmospheric refraction effects in Earth remote sensing. ISPRS J. Photogramm. Remote Sens. 54(6) (1999) 360 https://doi.org/10.1016/S0924-2716(99)00030-1

C. A. Paola, A. Cruzado and F. M. Carrasco Galleguillos, Light refraction in the earth’s atmosphere I. Inferior mirages: analytic solution of ray paths, Rev. Mex. Fis. 68 (2022) 1 https://doi.org/10.31349/RevMexFis.68.041301

W. G. Rees, C. M. Roach and C. H. F. Glover, Inversion of atmospheric refraction data. J. Opt. Soc. Am. A. 8 (1991) 330 https://doi.org/10.1364/JOSAA.8.000330

R. Stull, An Introduction to Boundary Layer Meteorology. (Kluwer Acadmic Publishers, Dordrecht, The Netherlands, 1988). pp. 670

J. Stam and E. Languenou, Ray Tracing in Non-Constant Media. In Proc. Eurographics Workshop on Rendering (1996) 225

S. Y. van der Werf, Noninverted images in inferior mirages. Appl. Opt. 50 (2011) F12 https://doi.org/10.1364/AO.50.000F12

M. Yan, C. Wang, J. Ma, Z. Wang, Z. and B. Yu, Correction of Atmospheric Refraction Geolocation Error for High Resolution Optical Satellite Pushbroom Images. Photogramm. Eng. Remote Sens. 82 (2016) 427 https://doi.org/10.14358/PERS.82.6.427

D. Yu, H. Li and B. Li, A comparison of models for correcting astronomical atmospheric refraction. Proc. SPIE 11763, Seventh Symposium on Novel Photoelectronic Detection Technology and Applications (2021) 1176309. https://doi.org/10.1117/12.2585676

Downloads

Published

2023-11-01

How to Cite

[1]
A. Cruzado, A. Cesanelli, and C. Alejandro Paola, “Light refraction in the earth’s atmosphere II. Inferior mirages: regions for images and objects observation”, Rev. Mex. Fís., vol. 69, no. 6 Nov-Dec, pp. 061303 1–, Nov. 2023.