Prototipo de un monitor de ozono, basado en el método de absorción UV, fabricado con materiales impresos 3D y electrónica implementada en PSoC 5

Authors

  • Gerardo Collazo Rodríguez Instituto Tecnológico De La Laguna
  • Hector Aurelio Moreno Casillas Instituto Tecnológico De La Laguna
  • Francisco Gerardo Flores García Instituto Tecnológico De La Laguna
  • Francisco Valdés Perezgasga Instituto Tecnológico De La Laguna
  • José Irving Hernández Jácquez Instituto Tecnológico De La Laguna

DOI:

https://doi.org/10.31349/RevMexFis.70.020901

Keywords:

ozone, beer-lambert, LED UV, 3D Printing, PSoC 5

Abstract

In this work the design and manufacture of a prototype of an ozone measuring device is presented. One of the goals of this design is to develop an easy and fast way to manufacture these kind of devices, that might also be used for other gases. The method used to measure the ozone is the Beer´s Lamberth Law. Readily available materials are used. An UV LED was used as a source, and a photodiode as a detector. For the air-light interaction an absorption cell was necessary, it was made of Polylactic Acid and manufactured in a 3D printer. In the microcontroller the operational amplifiers and the signal processors were implemented in a PSoC 5. Good performance of all components, both electronic and 3D printed, was observed. Measurements were achieved in a range of 0 to 100 ppm with an accuracy of ± 5 ppm.

En este trabajo se presenta el diseño y la fabricación de un prototipo para medición de ozono, en el cual se utilizan materiales de fácil adquisición. El propósito de este diseño es proporcionar una alternativa robusta y menos costosa de fabricar un dispositivo de medición de ozono que puede ser extendida a otros gases. El método de medición se basa en la Ley De Beer-Lamberth. Se utiliza un LED (light-emitting diode) UV como fuente y un fotodiodo como detector de luz. La muestra de aire interactúa con la luz en el interior de una celda de absorción, fabricada en una impresora 3D usando como material PLA (Polylactic Acid). La amplificación y el procesamiento de la señal, se realizaron mediante una tarjeta electrónica PSoC (Programable System on Chip). Se observó un buen comportamiento de todos los componentes, tanto electrónicos como impresos 3D. Se lograron realizar mediciones en un rango de 0 a 100 ppm con una exactitud de ± 5 ppm.

References

F. Sánchez C, Consideraciones sobre la capa de ozono y su relación con el cáncer de piel, Rev. Med. Chil. 134 (2006) 1185, https://doi.org/10.4067/S0034-98872006000900015

Dirección De Monitoreo Atmosferico De La CDMX, ¿Qué es Ozono? (2016).

C. J. Weschler, Ozone in indoor environments: Concentration and chemistry, Indoor Air 10 (2000) 269, https://doi.org/10.1034/j.1600-0668.2000.010004269.x

S. I. Sousa, M. C. Alvim-Ferraz, and F. G. Martins, Health effects of ozone focusing on childhood asthma: What is now known - a review from an epidemiological point of view, Chemosphere 90 (2013) 2051, https://doi.org/10.1016/j.chemosphere.2012.10.063

S. K. Sahu, et al., Ozone pollution in China: Background and transboundary contributions to ozone concentration and related health effects across the country, Science of the Total Environment 761 (2021), https://doi.org/10.1016/j.scitotenv.2020.144131

M. Arjomandi, et al., Effect of ozone on allergic airway inflammation, Journal of Allergy and Clinical Immunology: Global 1 (2022) 273, https://doi.org/10.1016/j.jacig.2022.05.007

Y. Niu, et al., Long-term exposure to ozone and cardiovascular mortality in China: a nationwide cohort study, The Lancet Planetary Health 6 (2022) e496, https://doi.org/10.1016/S2542-5196(22)00093-6

S. M. Holm and J. R. Balmes, Systematic Review of Ozone Effects on Human Lung Function, 2013 Through 2020, Chest 161 (2022) 190, https://doi.org/10.1016/j.chest.2021.07.2170

M. Otieno, et al., Interactive effects of ozone and carbon dioxide on plant-pollinator interactions and yields in a legume crop, Environmental Advances 9 (2022), https://doi.org/10.1016/j.envadv.2022.100285

C. P. Leisner and E. A. Ainsworth, Quantifying the effects of ozone on plant reproductive growth and development, Global Change Biology 18 (2012) 606, https://doi.org/10.1111/j.1365-2486.2011.02535.x

A. J. Holder and F. Hayes, Substantial yield reduction in sweet potato due to tropospheric ozone, the dose-response function, Environmental Pollution 304 (2022), https://doi.org/10.1016/j.envpol.2022.119209

F. El-Athman, et al., Pool water disinfection by ozone-bromine treatment: Assessing the disinfectant efficacy and the occurrence and in vitro toxicity of brominated disinfection byproducts, Water Research 204 (2021), https://doi.org/10.1016/j.watres.2021.117648

S. Albert, et al., Assessing the potential of unmanned aerial vehicle spraying of aqueous ozone as an outdoor disinfectant for SARS-CoV-2, Environmental Research 196 (2021), https://doi.org/10.1016/j.envres.2021.110944

G. Moore, C. Griffith, and A. Peters, Bactericidal propertiesof ozone and its potential application as a terminal disinfectant, Journal of Food Protection 63 (2000) 1100, https://doi.org/10.4315/0362-028X-63.8.1100

G. Ghanizadeh, et al., Heterogeneous catalytically ozonation as a novel disinfectant for inhibition of Legionella pneumophila virulence, Gene Reports 17 (2019), https://doi.org/10.1016/j.genrep.2019.100534

B. Mennad, et al., Effect of the anode material on ozone generation in corona discharges, Vacuum 104 (2014) 29, https://doi.org/10.1016/j.vacuum.2013.12.005

H. Itoh, et al., Investigation of ozone loss rate influenced by the surface material of a discharge chamber, Ozone: Science and Engineering 26 (2004) 487, https://doi.org/10.1080/01919510490507847

M. L. Riley, S. Watt, and N. Jiang, Tropospheric ozone measurements at a rural town in New South Wales, Australia, Atmospheric Environment 281 (2022), https://doi.org/10.1016/j.atmosenv.2022.119143

A. Ripoll, et al., Testing the performance of sensors for ozone pollution monitoring in a citizen science approach, Science of the Total Environment 651 (2019) 1166, https://doi.org/10.1016/j.scitotenv.2018.09.257

X. Pang, et al., Electrochemical ozone sensors: A miniaturised alternative for ozone measurements in laboratory experiments and air-quality monitoring, Sensors and Actuators, B: Chemical 240 (2017) 829, https://doi.org/10.1016/j.snb.2016.09.020

Y. Aoyagi, et al., High-Sensitivity Ozone Sensing Using 280 nm Deep Ultraviolet Light-Emitting Diode for Detection of Natural Hazard Ozone, Journal of Environmental Protection 03 (2012) 695, https://doi.org/10.4236/jep.2012.38082

L. De Maria and G. Rizzi, Ozone sensor for application in medium voltage switchboard, Journal of Sensors 2009 (2009) 1297, https://doi.org/e10.1155/2009/608714

M. Degner, et al., UV LED-based fiber coupled optical sensor for detection of ozone in the ppm and ppb range, Proceedings of IEEE Sensors (2009) 95, https://doi.org/10.1109/ICSENS.2009.5398230

S. O’Keeffe, C. Fitzpatrick, and E. Lewis, An optical fibre based ultra violet and visible absorption spectroscopy system for ozone concentration monitoring, Sensors and Actuators, B:Chemical 125 (2007) 372, https://doi.org/10.1016/j.snb.2007.02.023

M. Degner, et al., High resolution led-spectroscopy for sensor application in harsh environment, Instrumentation and Measurement Technology Conference Proceedings (2010) 1382, https://doi.org/10.1109/imtc.2010.5488239

S. Khan, D. Newport, and S. L. Calvé, Gas detection using portable deep-uv absorption spectrophotometry: A review, Sensors (Switzerland) 19 (2019), https://doi.org/10.3390/s19235210

Downloads

Published

2024-03-01

How to Cite

[1]
G. Collazo Rodríguez, H. A. . Moreno Casillas, F. G. Flores García, . F. Valdés Perezgasga, and J. I. Hernández Jácquez, “Prototipo de un monitor de ozono, basado en el método de absorción UV, fabricado con materiales impresos 3D y electrónica implementada en PSoC 5”, Rev. Mex. Fís., vol. 70, no. 2 Mar-Apr, pp. 020901 1–, Mar. 2024.