A thermo-magnetic bag model for the quark-gluon plasma

Authors

  • Paulina Fernanda Valenzuela-Coronado Universidad de Guanajuato
  • Maria Elena Tejeda Yeomans Universidad de Colima
  • Jose Torres-Arenas Universidad de Guanajuato

DOI:

https://doi.org/10.31349/RevMexFis.70.021201

Keywords:

quark-gluon plasma, magnetic field, quasi-particle, thermo-magnetic coupling, pressure

Abstract

In this work we study the pressure of the quark-gluon plasma (QGP) in the presence of a weak magnetic field, using a minimally enhanced model of a weakly interacting gas of quasi-particles in a thermal bath. We include the magnetic field effects through the quark mass that has been modified using a recently proposed thermo-magnetic coupling. This thermo-magnetic coupling emerges form the quark-gluon vertex in the HTL approximation [1]. We use Lattice QCD [2] data, to constrain the thermo-magnetic bag function of the quasi-particle model and provide an estimate of the thermo-magnetic vacuum energy density. We then compute the transverse pressure of the system and compare with similar results from the literature. We find that the inverse magnetic catalysis already built within this thermo-magnetic coupling allows a robust description of this Lattice QCD data for the pressure of the QGP in the presence of a weak magnetic field. The extension to the thermal quasi-particle model we have introduced here, makes it easier to pursue further phenomenological studies that require simulations with an EoS that has integrable quasi-particle thermodynamic variables which have the general features of lattice data in the weak magnetic field regime.

References

A. Ayala, J. J. Cobos-Martínez, M. Loewe, M. E. TejedaYeomans, and R. Zamora, Phys. Rev. D 91 (2015) 016007.

G. S. Bali, G. Endrõdi, and S. Piemonte, JHEP 07 (2020) 183.

M. E. Tejeda-Yeomans, CERN Yellow Rep. School Proc. 2 (2021) 137.

D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A 803 (2008) 227.

V. Skokov, A. Y. Illarionov, and V. Toneev, Int. J. Mod. Phys. A 24 (2009) 5925.

V. Voronyuk et al., Phys. Rev. C 83 (2011) 054911.

A. Bzdak and V. Skokov, Phys. Lett. B 710 (2012) 171.

W.-T. Deng and X.-G. Huang, Phys. Rev. C 85 (2012) 044907.

L. McLerran and V. Skokov, Nucl. Phys. A 929 (2014) 184.

G. Inghirami, M. Mace, Y. Hirono, L. Del Zanna, D. E. Kharzeev, and M. Bleicher, Eur. Phys. J. C 80 (2020) 293.

L. Oliva, Eur. Phys. J. A 56 (2020) 255.

K. Hattori, M. Hongo, and X.-G. Huang, Symmetry 14 (2022) 1851.

F. Becattini and M. A. Lisa, Ann. Rev. Nucl. Part. Sci. 70 (2020) 395.

A. Ayala, I. Domínguez, I. Maldonado, and M. E. TejedaYeomans, Phys. Rev. C 105 (2022) 034907.

T. Niida, EPJ Web Conf. 271 (2022) 08008.

X.-Y. Wu, C. Yi, G.-Y. Qin, and S. Pu, Phys. Rev. C 105 (2022) 064909.

R. L. S. Farias, W. R. Tavares, R. M. Nunes, and S. S. Avancini, Eur. Phys. J. C 82 (2022) 674.

H. T. Ding, S. T. Li, Q. Shi, A. Tomiya, X. D. Wang, and Y. Zhang, Acta Phys. Polon. Supp. 14 (2021) 403.

H. T. Ding, S. T. Li, Q. Shi, and X. D. Wang, Eur. Phys. J. A 57 (2021) 202.

R. K. Mohapatra, Phys. Rev. C 99 (2019) 024902.

M. D’Elia, L. Maio, F. Sanfilippo, and A. Stanzione, Phys. Rev. D 104 (2021) 114512.

R. Ghosh and N. Haque, Phys. Rev. D 105 (2022) 114029.

C. Grayson, M. Formanek, J. Rafelski, and B. Müller, Phys. Rev. D 106 (2022) 014011.

K. K. Gowthama, M. Kurian, and V. Chandra, Phys. Rev. D 106 (2022) 034008.

K. Hattori, M. Hongo, and X.-G. Huang, Symmetry 14 (2022), https://doi.org/10.3390/sym14091851

D. Teng and X. Guo, Chin. Phys. C 46 (2022) 094104.

G. S. Bali et al., JHEP 02 (2012) 044.

G. S. Bali, F. Bruckmann, G. Endrödi, Z. Fodor, S. D. Katz, and A. Schäfer, Phys. Rev. D 86 (2012) 071502.

G. S. Bali, F. Bruckmann, G. Endrödi, F. Gruber, and A. Schäefer, JHEP 04 (2013) 130.

G. S. Bali, F. Bruckmann, G. Endrödi, S. D. Katz, and A. Schäfer, JHEP 08 (2014) 177.

R. A. Schneider and W. Weise, Phys. Rev. C 64 (2001) 055201.

J.-P. Blaizot, E. S. Fraga, and L. F. Palhares, Phys. Lett. B 722 (2013) 167.

A. Ayala, C. A. Domínguez, L. A. Hernández, M. Loewe, and R. Zamora, Phys. Rev. D 92 (2015) 096011. [Phys. Rev. D 92 (2015) 119905].

S. Rath and B. K. Patra, JHEP 12 (2017) 098.

B. Karmakar, R. Ghosh, A. Bandyopadhyay, N. Haque, and M. G. Mustafa, Phys. Rev. D 99 (2019) 094002.

D. E. Kharzeev, K. Landsteiner, A. Schmitt, and H.-U. Yee, Lect. Notes Phys. 871 (2013) 1.

I. A. Shovkovy, Particles 5 (2022) 442.

B. Karmakar, R. Ghosh, A. Bandyopadhyay, N. Haque, and M. G. Mustafa, Springer Proc. Phys. 277 (2022) 359.

S. K. Das et al., Int. J. Mod. Phys. E 31 (2022) 12.

E. S. Fraga, L. F. Palhares, and T. E. Restrepo, (2023).

D. H. Rischke, Progress in Particle and Nuclear Physics 52 (2004) 197.

S. K. Ghosh, T. K. Mukherjee, M. G. Mustafa, and R. Ray, Phys. Rev. D 73 (2006) 114007.

M. Bluhm, B. Kampfer, and G. Soff, ¨ Physics Letters B 620 (2005) 131.

A. Ayala, M. Loewe, J. C. Rojas, and C. Villavicencio, Phys. Rev. D 86 (2012) 076006.

Y. B. Ivanov, V. V. Skokov, and V. D. Toneev, Phys. Rev. D 71 (2005) 014005.

S. Koothottil and V. M. Bannur, Phys. Rev. C 99 (2019) 035210.

L.-J. Luo, J. Cao, Y. Yan, W.-M. Sun, and H.-S. Zong, Eur. Phys. J. C 73 (2013) 2626.

V. M. Bannur, Int. J. Mod. Phys. A 29 (2014) 1450056.

P. F. Valenzuela-Coronado, Propiedades termodinámicas del plasma de quarks-gluones usando un modelo de cuasipartícula, Master’s thesis, Division de Ciencias e Ingenierías, Universidad de Guanajuato (2020), https://www.repositorio.ugto.mx/

M. I. Gorenstein and S. N. Yang, Phys. Rev. D 52 (1995) 5206.

S. Koothottil and V. M. Bannur, Phys. Rev. C 99 (2019) 035210.

R. L. S. Farias, K. P. Gomes, G. Krein, and M. B. Pinto, Phys. Rev. C 90 (2014) 025203.

J. O. Andersen, W. R. Naylor, and A. Tranberg, Rev. Mod. Phys. 88 (2016) 025001.

N. Mueller and J. M. Pawlowski, Phys. Rev. D 91 (2015) 116010.

M. D’Elia, F. Manigrasso, F. Negro, and F. Sanfilippo, Phys. Rev. D 98 (2018) 054509.

A. Ayala, M. Loewe, and R. Zamora, Phys. Rev. D 91, (2015) 016002.

M. Kurian, Phys. Rev. D 102 (2020) 014041.

M. Thaler, Technische Univ. Muenchen, Garching (Germany) (2006), https://d-nb.info/978932617/34

C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D 73 (2006) 014019.

A. Ayala et al., Phys. Rev. D 94 (2016) 054019.

Downloads

Published

2024-03-01

How to Cite

[1]
P. F. Valenzuela-Coronado, M. E. Tejeda Yeomans, and J. Torres-Arenas, “A thermo-magnetic bag model for the quark-gluon plasma”, Rev. Mex. Fís., vol. 70, no. 2 Mar-Apr, pp. 021201 1–, Mar. 2024.