Solution of the inverse problem of estimating particle size distributions

Authors

  • Milton Alejandro Escobar Vázquez Universidad Tecnológica de la Mixteca
  • Silvia Reyes Mora Universidad Tecnológica de la Mixteca
  • Angel Sinue Cruz Felix Instituto Nacional de Astrofísica, Óptica y Electrónica

DOI:

https://doi.org/10.31349/RevMexFis.70.021304

Keywords:

Turbidimetry, Mie Theory, Inverse Penrose matrix, Tikhonov regularization, light extinction

Abstract

In this work, we describe two alternative methods for solving the ill-conditioned inverse problem that allows estimating the particle size distribution (PSD) from turbidimetry measurements. The first method uses the inverse Penrose matrix to solve the inverse problem in its discrete form. The second method consists of replacing an ill-posed problem with a collection of well-posed problems, penalizing the norm of the solution, and it is known as the Tikhonov regularization. Both methods are used to solve a synthetic application of the inverse problem by solving the direct problem using a theoretical expression of the distribution of particles sizes function f(D) and considering soft industrial latex particles (NBR), with average particle diameters of: 80.4, 82.8, 83.6, and 84.5 nm; and three illumination wavelengths in the UV-Vis region: 300, 450, and 600 nm. The estimated solution obtained by the inverse Penrose matrix is different from the original solution due to the inverse problem is ill-conditioned. In contrast, when using Tikhonov’s regularization, the estimate obtained is close to the original solution, which proves that the particle size distribution is adequate.

References

M. F. Izaguirre, et al., Estimaci´on de la distribuci´on de tama˜nos de part´ıcula por turbidimetr´ıa. Comparaci´on de tres t´ecnicas de resoluci´on del problema inverso., Asociaci´on Ar- gentina de Mec´anica Computacional 31 (2012) 3193, www. amcaonline.org.ar

L. A. Clementi, Caracterizaci´on de part´ıculas nanom´etricas por t´ecnicas de dispersi´on de luz. Estimaci´on de distribuciones de tama˜nos en l´atex polim´ericos., Ph.D. thesis, Universidad Na- cional del Litoral, Argentina (2011).

A. Kirsch, An Introduction to the Mathematical Theory of In- verse Problems, 2nd ed. (Springer, New York City, 1996), pp. 1–307.

J. G. G´arces, An´alisis de la distibuci´on de tama˜nos de part´ıculas mediante difracci´on l´aser: aplicaci´on para la mejora de especias y aromas., Ph.D. thesis, Universidad Polit´ecnica de Valencia, Valencia (2017).

N. L. . M. E. G. Tyler Galpin, Ryan T. Chartier, Refractive in- dex retrievals for polystyrene latex spheres in the spectral range 220–420 nm., Aerosol Science and Technology 51 (2017) 1158.

F. W. C. U. Corporation, Detecci´on de endotoxinas mediante el ensayo de LAL, m´etodo turbidim´etrico., FUJIFILM Wako

Chemical U.S.A Corporation (2014), www.wakopyrostar. com

D. A. Gonz´alez and A. T. H. Garc´ıa, Los m´etodos tur- bidim´etricos y sus aplicaciones en las ciencias de la vida., CENIC 44 (2013) 18, www.redalyc.org/articulo. oa?id=181226886003.

M. A. Llosent, L. M. Gugliotta, and G. R. Meira, Particle Size Distribution of SBR and NBR Latexes by UV-VIS Turbidime- try Near the Rayleigh Region., INTEC 69 (1996) 696.

T. Kourti, Polymer Latexes: Production by Homogeneous Nu-cleation and Methods for Particle Size Determination., Ph.D. thesis, McMaster University (1989).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, New York City, 1983), pp. 3–521.

N. Thome, La inversa generalizada de Moore-Penrose y Aplicaciones., Publicaciones electr´onicas Sociedad Matem´atica Mexicana. 21 (2019) 81, www.smm.org.mx

I. M. Cruz, Problemas lineales discretos mal planteados y sus aplicaciones en restauraci´on de im´agenes digitales., Master’s thesis, Universidad Nacional Aut´onoma de M´exico, Ciudad de M´exico (2017).

F. A. Otero, Caracterizaci´on de Sistemas de Part´ıculas por Dispersi´on de Luz. Estimaci´on de Par´ametros y Problema In- verso., Master’s thesis, Universidad del Mar de Plata, Argentina

(2012).

S. H. Friedberg, A. J. Insel, and L. E. Spence, ´Algebra Lineal, 1st ed. (Illinois State University, Mexico, 1982), pp. 1–537.

A. del Mazo Vivar, Esparcimiento de Rayleigh., EUREKA 13 (2016) 505, http://www.redalyc.org/articulo. oa?id=92044744019

E. Hecht, Optics, 5th ed. (PEARSON, Adelphi University, 1988), pp. 9–722.

R. A. Serway and J. W. J. Jr, F´ısica para ciencias e ingenier´ıa con f´ısica moderna., vol. 2, 7th ed. (CENGAGE LEARNING, 2008), pp. 1–851.

R. L. Burden and J. D. Faires, An´alisis Num´erico, 7th ed. (Grupo Editorial Iberoamericana, M´exico, 1985), pp. 1–831.

J. W. Demmel, Applied Numerical Linear Algebra (SIAM, Philadelphia, 1997), pp. 1–409.

E. L. G. Fern´andez, M. P. H. Sanchez, and J. O. A. Hern´andez, Soluci´on del problema inverso de dispersi´on angular de luz para part´ıculas de l´atex., INIMET (2010) 24, http://www. redalyc.org/articulo.oa?id=223017807004

Downloads

Published

2024-03-01

How to Cite

[1]
M. A. Escobar Vázquez, S. Reyes Mora, and A. S. Cruz Felix, “Solution of the inverse problem of estimating particle size distributions”, Rev. Mex. Fís., vol. 70, no. 2 Mar-Apr, pp. 021304 1–, Mar. 2024.