Bright soliton of Stochastic perturbed Biswas-Milovic equation with cubic-quintic-septic law having multiplicative white noise

Authors

  • Neslihan Ozdemir Istanbul Gelisim University
  • Selvi Altun Suleymaniye Mh. Destan Sk.
  • Muslum Ozisik Yildiz Technical University
  • Aydin Secer Biruni University
  • Mustafa Bayram Biruni University

DOI:

https://doi.org/10.31349/RevMexFis.70.021303

Keywords:

Stochastic model, Wiener process, Noise strength, Brownian motion.

Abstract

For the first time, the adopted stochastic form of the perturbed Biswas-Milovic equation with cubic-quintic-septic law having spatio-temporal and chromatic dispersion in the presence of multiplicative white noise in Ito sense was presented and examined. The Biswas-Milovic equation ˆ models numerous physical phenomena occurring in optical fiber. We analyzed the optical soliton solutions of the stochastic model with the aid of a subversion of the new extended auxiliary equation method. Furthermore, we investigated the evaluation of the noise impacts and the effects of some model parameters on the dynamics of the generated soliton. Finally, graphical depictions of the derived soliton types were represented for some solution functions. The stochastic model and the derived results will contribute to the comprehension of the nonlinear dynamics of pulse propagation in optical fibers which has great importance for the advancement of optical communication engineering.

Author Biography

Mustafa Bayram, Biruni University

Computer engineering

References

A. Biswas, D. Milovic, and M. Edwards, Mathematical theory of dispersion-managed optical solitons, (Springer Science & Business Media, 2010)

E. M. E. Zayed et al., Optical solitons and conservation laws associated with kudryashov’s sextic power-law nonlinearity of refractive index, Ukrainian Journal of Physical Optics 22 (2021) 38. https://doi.org/10.3116/16091833/22/1/38/2021

Y. Yildrim et al., Highly dispersive optical soliton perturbation with kudryashov’s sextic-power law of nonlinear refractive index., Ukrainian Journal of Physical Optics 23 (2022) 24, https://doi.org/10.3116/16091833/23/1/24/2022

A. R. Adem et al., Stationary optical solitons with nonlinear chromatic dispersion for lakshmanan-porsezian-daniel model having kerr law of nonlinear refractive index, Ukr. J. Phys. Opt. 22 (2021) 83, https://doi.org/10.3116/16091833/22/2/83/2021

A. Biswas, J. Edoki, P. Guggilla, S. Khan, A. K. Alzahrani, M. R. Belic, Cubic-quartic optical soliton perturbation with lakshmanan-porsezian-daniel model by semi-inverse variational principle, Ukr. J. Phys. Opt 22 (2021) 123

A. Al Qarni, A. Bodaqah, A. Mohammed, A. Alshaery, H. Bakodah, A. Biswas, Cubic-quartic optical solitons for lakshmanan-porsezian-daniel equation by the improved adomian decomposition scheme, Ukr. J. Phys. Opt. 23 (2022) 228

Y. Yıldırım et al., Optical solitons in fibre bragg gratings with third-and fourth-order dispersive reflectivities, Ukr. J. Phys. Opt. 22 (2021) 239

Y. Yıldırım et al., Cubic-quartic optical solitons having quadratic-cubic nonlinearity by sine-gordon equation approach., Ukrainian Journal of Physical Optics 22 (2021) 255. https://doi.org/10.3116/16091833/22/4/255/202

O. González-Gaxiola, A. Biswas, Y. Yıldırım, H. M. Alshehri, Highly dispersive optical solitons in birefringent fibres with non) local form of nonlinear refractive index: Laplace-adomian decomposition., Ukrainian Journal of Physical Optics 23 (2022) 68, https://doi.org/10.3116/16091833/23/2/68/2022

A. Neirameh, M. Eslami, New optical soliton of stochastic chiral nonlinear Schröodinger equation, Optical and Quantum Electronics 55 (2023) 444, https://doi.org/10.1007/s11082-023-04564-8

E. M. Zayed et al., Optical solitons in the sasa-satsuma model with multiplicative noise via Ito calculus, Ukr. J. Phys. Opt. 23 (2022) 9, https://doi.org/10.3116/16091833/23/1/9/2022

H. Cakicioglu, M. Ozisik, A. Secer, M. Bayram, Stochastic dispersive Schrödinger-hirota equation having parabolic law non-linearity with multiplicative white noise via ito calculus, Optik 279 (2023) 170776, https://doi.org/10.1016/j.ijleo.2023.170776

E. M. Zayed, M. E. Alngar, R. M. Shohib, K. A. Gepreel, T. A. Nofal, Optical solitons with (2+1)- dimensional nonlinear Schrödinger equation having spatio-temporal dispersion and multiplicative white noise via ito calculus, Optik 261 (2022) 169204. https://doi.org/10.1016/j.ijleo.2022.169204

A. Secer, Stochastic optical solitons with multiplicative white noise via Ito calculus, Optik 268 (2022) 169831, https://doi.org/10.1016/j.ijleo.2022.169831

E. Mohamed, I. El-Kalla, A. Tarabia, A. A. Kader, New optical solitons for perturbed stochastic nonlinear schroodinger ¨ equation by functional variable method, Optical and Quantum Electronics 55 (2023) 603, https://doi.org/10.1007/s11082-023-04844-3

Y. Alhojilan, H. M. Ahmed, W. B. Rabie, Stochastic solitons in birefringent fibers for biswas-arshed equation with multiplicative white noise via Ito calculus by modified extended mapping method, Symmetry 15 (2023) 207, https://doi.org/10.3390/sym15010207

E. Ulutas, Travelling wave and optical soliton solutions of the wick-type stochastic nlse with conformable derivatives, Chaos, Solitons & Fractals 148 (2021) 111052, https://doi.org/10.1016/j.chaos.2021.111052

H. Zhong, B. Tian, M. Li, W.-R. Sun, H.-L. Zhen, Stochastic dark solitons for a higher-order nonlinear Schrödinger equation in the optical fiber, Journal of Modern Optics 60 (2013) 1644, https://doi.org/10.1080/09500340.2013.852713

X. Liu, W. Liu, H. Triki, Q. Zhou, A. Biswas, Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrödinger equation, Nonlinear Dynamics 96 (2019) 801, https://doi.org/10.1007/s11071-019-04822-z

Z.-y. Zhang, Y.-x. Li, Z.-h. Liu, X.-j. Miao, New exact solutions to the perturbed nonlinear Schrödinger’s equation with kerr law nonlinearity via modified trigonometric function series method, Communications in Nonlinear Science and Numerical Simulation 16 (2011) 3097, https://doi.org/10.1016/j.cnsns.2010.12.010

M. Ozisik et al., Investigation of optical soliton solutions of higher-order nonlinear Schrödinger equation having kudryashov nonlinear refractive index, Optik (2023) 170548, https://doi.org/10.1016/j.ijleo.2023.170548

N. Ozdemir, Optical solitons for radhakrishnan-kundulakshmanan equation in the presence of perturbation term and having kerr law, Optik 271 (2022) 170127, https://doi.org/10.1016/j.ijleo.2022.170127

N. Ozdemir, A. Secer, M. Ozisik, M. Bayram, Perturbation of dispersive optical solitons with Schrödingerhirota equation with kerr law and spatio-temporal dispersion, Optik 265 (2022) 169545, https://doi.org/10.1016/j.ijleo.2022.169545

N. A. Kudryashov, Hamiltonians of the generalized nonlinear Schrödinger equations, Mathematics 11 (2023) 2304, https://doi.org/10.3390/math11102304

N. A. Kudryashov, Embedded solitons of the generalized nonlinear Schrödinger equation with high dispersion, Regular and Chaotic Dynamics 27 (2022) 680, https://doi.org/10.1134/S1560354722060065

H. Cakicioglu, M. Ozisik, A. Secer, M. Bayram, Optical soliton solutions of Schrödinger-hirota equation with parabolic law nonlinearity via generalized kudryashov algorithm, Optical and Quantum Electronics 55 (2023) 407, https://doi.org/10.1007/s11082-023-04634-x

I. Onder, A. Secer, M. Bayram, Optical soliton solutions of time-fractional coupled nonlinear Schrödinger system via kudryashov-based methods, Optik 272 (2023) 170362, https://doi.org/10.1016/j.ijleo.2022.170362

N. A. Kudryashov, Solitary waves of the generalized radhakrishnan-kundu-lakshmanan equation with four powers of nonlinearity, Physics Letters A 448 (2022) 128327, https://doi.org/10.1016/j.physleta.2022.128327

E. M. Zayed, R. M. Shohib, K. A. Gepreel, M. M. ElHorbaty, and M. E. Alngar, Cubic-quartic optical soliton perturbation biswas-milovic equation with kudryashov’s law of refractive index using two integration methods, Optik 239 (2021) 166871, https://doi.org/10.1016/j.ijleo.2021.166871

A. Biswas, D. Milovic, Bright and dark solitons of the generalized nonlinear Schrödinger’s equation, Communications in Nonlinear Science and Numerical Simulation 15 (2010) 1473, https://doi.org/10.1016/j.cnsns.2009.06.017

E. C. Aslan, F. Tchier, and M. Inc, On optical solitons of the Schrödinger-hirota equation with power law nonlinearity in optical fibers, Superlattices and Microstructures 105 (2017) 48, https://doi.org/10.1016/j.spmi.2017.03.014

A. Biswas, M. Ekici, A. Sonmezoglu, and M. R. Belic, Highly dispersive optical solitons with cubic-quinticseptic law by fexpansion, Optik 182 (2019) 897, https://doi.org/10.1016/j.ijleo.2019.01.058

A. A. Magazev, M. N. Boldyreva, Schrödinger equations in electromagnetic fields: Symmetries and noncommutative integration, Symmetry 13 (2021) 1527, https://doi.org/10.3390/sym13081527

H. Abdelwahed, E. El-Shewy, R. Sabry, M. A. Abdelrahman, Characteristics of stochastic langmuir wave structures in presence of Ito sense, Results in Physics 37 (2022) 105435, https://doi.org/10.1016/j.rinp.2022.105435

S. Altun, M. Ozisik, A. Secer, M. Bayram, Optical solitons for biswas-milovic equation using the new kudryashov’s scheme, Optik 270 (2022) 170045, https://doi.org/10.1016/j.ijleo.2022.170045

M. Ozisik, Novel (2+ 1) and (3+ 1) forms of the biswas-milovic equation and optical soliton solutions via two efficient techniques, Optik 269 (2022) 169798, https://doi.org/10.1016/j.ijleo.2022.169798

P. Albayrak, Optical solitons of biswas-milovic model having spatio-temporal dispersion and parabolic law via a couple of kudryashov’s schemes, Optik 279 (2023) 170761, https://doi.org/10.1016/j.ijleo.2023.170761

E. M. Zayed, R. M. Shohib, M. E. Alngar, Dispersive optical solitons with biswas-milovic equation having dual-power law nonlinearity and multiplicative white noise via Ito calculus, Optik 270 (2022) 169951, https://doi.org/10.1016/j.ijleo.2022.169951

L. Akinyemi, M. Mirzazadeh, S. Amin Badri, K. Hosseini, Dynamical solitons for the perturbated biswas-milovic equation with kudryashov’s law of refractive index using the first integral method, Journal of Modern Optics 69 (2022) 172, https://doi.org/10.1080/09500340.2021.2012286

N. Raza, M. Abdullah, A. R. Butt, Analytical soliton solutions of biswas-milovic equation in kerr and non-kerr law media, Optik 157 (2018) 993, https://doi.org/10.1016/j.ijleo.2017.11.043

B. Ghanbari et al., Families of exact solutions of biswasmilovic equation by an exponential rational function method, Tbilisi Mathematical Journal 13 (2020) 65, https://doi.org/10.32513/tbilisi/1593223219

B. Kour, S. Kumar, Time fractional biswas-milovic equation: Group analysis, soliton solutions, conservation laws and residual power series solution, Optik 183 (2019) 1085, https://doi.org/10.1016/j.ijleo.2019.02.099

P. Sunthrayuth, M. Naeem, N. A. Shah, R. Shah, J. D. Chung, On the solution of fractional biswas- milovic model via analytical method, Symmetry 15 (2023) 210, https://doi.org/10.3390/sym15010210

N. Raza, A. Javid, Optical dark and singular solitons to the biswas-milovic equation in nonlinear optics with spatiotemporal dispersion, Optik 158 (2018) 1049, https://doi.org/10.1016/j.ijleo.2017.12.186

M. Ozisik, A. Secer, M. Bayram, H. Aydin, An encyclopedia of kudryashov’s integrability approaches applicable to optoelectronic devices, Optik 265 (2022) 169499, https://doi.org/10.1016/j.ijleo.2022.169499

W. W. Mohammed, H. Ahmad, H. Boulares, F. Khelifi, M. ElMorshedy, Exact solutions of hirota- maccari system forced by multiplicative noise in the Ito sense, Journal of Low Frequency Noise, Vibration and Active Control 41 (2022) 74, https://doi.org/10.1177/14613484211028100

E. Yomba, A generalized auxiliary equation method and its application to nonlinear klein-gordon and generalized nonlinear camassa-holm equations, Physics Letters A 372 (2008) 1048, https://doi.org/10.1016/j. physleta.2007.09.003

Sirendaoreji, A new auxiliary equation and exact travelling wave solutions of nonlinear equations, Physics Letters A 356 (2006) 124, https://doi.org/10.1016/j.physleta.2006.03.034

E. M. Zayed, A further improved (g’/g)-expansion method and the extended tanh-method for finding exact solutions of nonlinear pdes, Wseas Transactions on Mathematics 10 (2011) 56

Downloads

Published

2024-03-01

How to Cite

[1]
N. Ozdemir, S. . Altun, M. . Ozisik, A. . Secer, and M. Bayram, “Bright soliton of Stochastic perturbed Biswas-Milovic equation with cubic-quintic-septic law having multiplicative white noise”, Rev. Mex. Fís., vol. 70, no. 2 Mar-Apr, pp. 021303 1–, Mar. 2024.