Optoelectronic and thermodynamic properties of the Yttrium filled skutterudite YFe4P12

Authors

  • S. Ilhem Messaoudi University of Ain Temouchent
  • A. Touia University of Ain Temouchent
  • O. Addou University of Ain Temouchent

DOI:

https://doi.org/10.31349/RevMexFis.70.061601

Keywords:

YFe4P12; optical; thermodynamic; FP-LAPW; Wien2k

Abstract

In this work, we sought to understand the structural, electronic, optical, and thermodynamic properties of the compound YFe4P12 using the full-potential and linear augmented plane-wave method (FP-LAPW) based on density functional theory (DFT), our calculation of the lattice parameter of this compound YFe4P12 is reasonably in good agreement with the experimental results. Calculations carried out on the electronic band structure showed that the YFe4P12 compound is classified as a direct-gap Half- half-metallic in the minority spins. Moreover, optical properties, such as the optical absorption coefficient, real and imaginary parts of the dielectric function, optical conductivity, refractive index, and optical reflectivity have been studied. The effects of pressure and temperature on the lattice parameter, heat capacities, coefficients of thermal expansion, entropy, and Debye temperature were explored using the quasi-harmonic Debye model.

References

M.S. Torikachvili et al., Low-temperature properties of rareearth and actinide iron phosphide compounds MFe4P12 (M= La, Pr, Nd, and Th), Physical Review B 36 (1987) 8660, https://doi.org/10.1103/PhysRevB.36.8660

E. Bauer et al., Magnetic behaviour of PrFe4Sb12 and NdFe4Sb12 skutterudites, Physica B: Condensed Matter 312 (2002) 840, https://doi.org/10.1016/S0921-4526(01)01210-8

G.P. Meisner, Superconductivity and magnetic order in ternary rare earth transition metal phosphides, Physica B+ C 108 (1981) 763, https://doi.org/10.1016/0378-4363(81)90686-0

N. Takeda and M. Ishikawa, The effect of La substitution and magnetic field on non-Fermi-liquid behaviour in CeRu4Sb12, Journal of Physics: Condensed Matter 13 (2001) 5971, https://doi.org/10.1088/0953-8984/13/26/312

W. Jeitschko and D. Braun, LaFe4P12 with filled CoAs3-type structure and isotypic lanthanoid-transition metal polyphosphides, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 33 (1977) 3401, https://doi.org/10.1107/S056774087701108X

N. T. Stetson, S. M. Kauzlarich, and H. Hope, The synthesis and structure of two filled skutterudite compounds: BaFe4Sb12 and BaRu4Sb12, Journal of Solid State Chemistry 91 (1991) 140, https://doi.org/10.1016/0022-4596(91)90067-R

C. B.H. Evers, L. Boonk, and W. Jeitschko, Alkaline Earth Transition Metal Antimonides AT4Sb12 (A= Ca, Sr, Ba; T= Fe, Ru, Os) with LaFe4P12-Structure, Zeitschrift für anorganische und allgemeine Chemie 620 (1994) 1028, https://doi.org/10.1002/zaac.19946200613

D.J. Braun and W. Jeitschko, Thorium-containing pnictides with the LaFe4P12 structure, Journal of the Less Common Metals 76 (1980) 33, https://doi.org/10.1016/0022-5088(80)90007-7

G.P. Meisner, M.S. Torikachvili, K.N. Yang, M.B. Maple, and R.P. Guertin, UFe4P12 and CeFe4P12: nonmetallic isotypes of superconducting LaFe4P12, J. Appli. Phys. 57 (1985) 3073, https://doi.org/10.1063/1.335217

A. Leithe-Jasper et al., Ferromagnetic Ordering in AlkaliMetal Iron Antimonides: NaFe4Sb12 and KFe4Sb12, Phys. Rev. Lett. 91 (2003) 037208, https://doi.org/10.1103/PhysRevLett.91.037208

B.C. Sales, B.C. Chakoumakos, and D. Mandrus, Thermoelectric properties of thallium-filled skutterudites, Phys. Rev. B 61 (2000) 2475, https://doi.org/10.1103/PhysRevB.61.2475

B.C. Sales, D.W.R.K. Mandrus, and R. Kifilled Williams, Filled skutterudite antimonides: a new class of thermoelectric materials, Science 272 (1996) 1325, https://doi.org/10.1126/science.272.5266.1325

J.-S. Choi, H.-J. Kim, H.-C. Kim, D.-B. Hyun, and T.-S. Oh, presented at the XVI ICT’97. Proceedings ICT’97. 16th International Conference on Thermoelectrics (Cat. No. 97TH8291), 1997 (unpublished)

J. Hayashi et al., Bulk Moduli of Superconducting filled skutterudites YT4P12 (T= Fe, Ru and Os). Photon Factory Activity Report 2008 # 26 Part B (2009)

I. Shirotani et al., Superconductivity of new filled skutterudite YFe4P12 prepared at high pressure, Journal of Physics: Condensed Matter 15 (2003) S2201, https://doi.org/10.1088/0953-8984/15/28/352

K. Magishi et al., NMR study of the new filled skutterudite superconductor YFe4P12, Physica B: Condensed Matter 359 (2005) 883, https://doi.org/10.1016/j.physb.2005.01.333

P. Blaha, K. Schwarz, G. K.H. Madsen, D. Kvasnicka, and J. Luitz, wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties 60 (2001). 18. A. Ababou et al., DFT-based computer simulation of the physical properties of transparent conducting oxide of delafossitetype: AgInO2 and AgYO2, Physica B: Condensed Matter 601 (2021) 412584, https://doi.org/10.1016/j.physb.2020.412584

J. P. Perdew, Kieron Burke, and Matthias Ernzerhof, Generalized gradient approximation made simple, Phys. rev. lett. 77 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865

A. Touia, K. Benyahia, and A. Tekin, First-principles calculations of structural, electronic, optical, and thermoelectric properties of LuNiBi and LuNiSb half-heusler, Journal of Superconductivity and Novel Magnetism 34 (2021) 2689, https://doi.org/10.1007/s10948-021-05970-3

L. Eyring, K. A. Gschneidner, and G.H. Lander, Handbook on the physics and chemistry of rare earths. (Elsevier, 2002)

I. Shirotani, Y. Shimaya, K. Kihou, C. Sekine, and T. Yagi, Systematic high-pressure synthesis of new filled skutterudites with heavy lanthanide, LnFe4P12 (Ln= heavy lanthanide, including Y), Journal of Solid State Chemistry 174 (2003) 32, https://doi.org/10.1016/S0022-4596(03)00170-1

M.A. Blanco, E. Francisco, and V. Luana, GIBBS: isothermalisobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Computer Physics Communications 158 (2004) 57, https://doi.org/10.1016/j.comphy.2003.12.001

J. Hayashi et al., X-ray diffraction study of filled skutterudite superconductors at high pressures, Photon Factory Activity Report 2007 #25 Part B (2008)

J.-G. Cheng et al., Pressure dependence of the superconducting transition temperature of the filled skutterudite YFe4P12, Phys. Rev. B 88 (2013) 024514, https://doi.org/10.1103/PhysRevB.88.024514

A. Touia, M. Ameri, and I. Ameri, Synthesis, crystal structure and physical properties of the thulium filled skutterudite TmFe4P12 under the effect of the pressure: LDA and LSDA calculation, Optik 126 (2015) 3253, https://doi.org/10.1016/j.ijleo.2015.07.130

I.R. Shein, K.I. Shein, N.I. Medvedeva, and A.L. Ivanovskii, Electronic properties of ThSiO4 polymorphs (thorite and huttonite) from first principles calculations, physica status solidi (b) 243 (2006) R44, https://doi.org/10.1002/pssb.200642093

Downloads

Published

2024-11-01

How to Cite

[1]
S. Ilhem Messaoudi, A. TOUIA, and O. Addou, “Optoelectronic and thermodynamic properties of the Yttrium filled skutterudite YFe4P12”, Rev. Mex. Fís., vol. 70, no. 6 Nov-Dec, pp. 061601 1–, Nov. 2024.