Numerical study of P3HT-based hybrid solid-state qantum dot solar cells with CdS quantum dots employing different metal oxides using SCAPS-1D
DOI:
https://doi.org/10.31349/RevMexFis.70.061001Keywords:
CdS quantum dots; P3HT; Hybrid Solar cell; SCAPS 1DAbstract
This study presents a comprehensive numerical investigation into solid-state quantum dot solar cells (SSQDSCs) utilizing P3HT poly(3-hexylthiophene) as both a hole transport and absorber layer employing SCAPS-1D simulation software, the research explores the performance of cells composed of FTO (Fluorine-doped Tin Oxide) as the front contact, integrated with different metal oxides (Titanium dioxide (TiO2), zinc oxide (ZnO), and tin dioxide (SnO2), CdS (Cadmium sulfide )quantum dots, P3HT, and Pt (platinum )as the back contact namely Hybrid solar cell. The thickness of each layer is systematically optimized, and the influence of various CdS quantum dots sizes is thoroughly examined. The study also dived into the characterization of interface defects at the P3HT/CdS junction, involving modifications to the electron affinity of P3HT. Additionally, the impact of metal work function variations was also investigated analyzing at each case critical parameters such as open-circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF), power conversion efficiency (PCE) and quantum efficiency. The results demonstrate that optimization of these parameters has the potential to elevate solar cell efficiency to 18%. These simulation findings offer valuable insights for comparative analysis and a deeper understanding of the challenges encountered in experimental research.
References
C. Tamin et al., Investigation of absorber and heterojunction in the pure sulphide kesterite, Boletin de la Sociedad Española de Cerámica y Vidrio 60 (2021) 380, https://doi.org/10.1016/j.bsecv.2020.05.004
Naureen et al., A Comparative Study of Quantum Dot Solar Cell with Two Different ETLs of WS2 and IGZO Using SCAPS-1D Simulator, Solar 2 (2022) 341, https://doi.org/10.3390/solar2030020
N. Kant and P. Singh, Review of next generation photovoltaic solar cell technology and comparative materialistic development, Materials Today: Proceedings 56 (2022) 3460, https://doi.org/10.1016/j.matpr.2021.11.116
A. S. Rasal et al., Stability of quantum dot-sensitized solar cells: A review and prospects, Nano Energy 94 (2022) 106854, https://doi.org/10.1016/j.nanoen.2021.106854.
G. Shilpa et al., Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): A review, Materials Science for Energy Technologies 6 (2023) 533, https://doi.org/10.1016/j.mset.2023.05.001
N. Chung et al., Quantum Dot Sensitized Solar Cell: Photoanodes, Counter Electrodes, and Electrolytes, Molecules 26 (2021) 2638, https://doi.org/10.3390/molecules26092638
D. H. Phuc and H. T. Tung, Quantum dot sensitized solar cell based on the different photoelectrodes for the enhanced performance, Solar Energy Materials and Solar Cells 196 (2019) 78, https://doi.org/10.1016/j.solmat.2019.03.038
D. H. Phuc and H. T. Tung, The effect of thickness on the performance of CdSe:Cu2+ -quantum dot-sensitized solar cells, Applied Physics A 124 (2018) 731, https://doi.org/10.1007/s00339-018-2150-z
A. K. Ogundele and G. T. Mola, Ternary atoms alloy quantum dot assisted hole transport in thin film polymer solar cells, Journal of Physics and Chemistry of Solids 171 (2022) 110999, https://doi.org/10.1016/j.jpcs.2022.110999
R. Katwal, A review: Properties and diverse applications of smart magnetic quantum dots, Nano-Structures & Nano- Objects 35 (2023) 101001, https://doi.org/10.1016/j.nanoso.2023.101001
Z. Abdulghani, A. Najm, and A. E. A. Holi, Numerical simulation of quantum dots as a buffer layer in CIGS solar cells: a comparative study, Scientific Reports 12 (2022) 8099, https://doi.org/10.1038/s41598-022-12234-0
Z. Abdulghani, A. Najm, A. Holi, A. Al-Zahrani, K. AlZahrani, and H. Moria, Numerical simulation of quantum dots as a buffer layer in CIGS solar cells: a comparative study, Scientific Reports 12 (2022) 8099, https://doi.org/10.1038/s41598-022-12234-0
R. Singh and B. Pal, Study of excited charge carrier’s lifetime for the observed photoluminescence and photocatalytic activity of CdS nanostructures of different shapes, Journal of Molecular Catalysis A: Chemical 371 (2013) 77, https://doi.org/10.1016/j.molcata.2013.01.024
X. Wang, Y. Li, Q. Gao, J. Kong, S. Yuan, and S. Wu, (NH4)2Sinduced improvement of CdS buffer layer for 15.52% efficiency solution-processed CIGS solar cell, Journal of Materials Science: Materials in Electronics 34 (2023) 1680, https://doi.org/10.1007/s10854-023-11097-z
C. Zhou et al., Controllable synthesis of CdS quantum dots and their photovoltaic application on quantum-dotsensitized ZnO nanorods, Journal of Solid State Electrochemistry 20 (2016) 533, https://doi.org/10.1007/s10008-015-3075-5
D. Behar et al., Electrodeposition of CdS quantum dots and their optoelectronic characterization by photoelectrochemical and scanning probe spectroscopies, Superlattices and Microstructures 25 (1999) 601, https://doi.org/10.1006/spmi.1999.0696
K. Veerathangam, M. Senthil Pandian, and P. Ramasamy, Influence of SILAR deposition cycles in CdS quantum dotsensitized solar cells, Journal of Materials Science: Materials in Electronics 29 (2018) 7318, https://doi.org/10.1007/s10854-018-8721-0
K. Aruchamy et al., Gel Polymer Electrolytes: Advancing Solid-State Batteries for High-Performance Applications, Gels 9 (2023) 585, https://doi.org/10.3390/gels9070585
N. Wang et al., Current Progress in Solid-State Electrolytes for Dye-Sensitized Solar Cells: A Mini-Review, Journal of Electronic Materials 49 (2020) 7085, https://doi.org/10.1007/s11664-020-08483-2
B. Korir, J. Kibet, and S. Ngari, Simulated performance of a novel solid-state dye-sensitized solar cell based on phenyl-C61- butyric acid methyl ester (PC61BM) electron transport layer, Optical and Quantum Electronics 53 (2021) 368, https://doi.org/10.1007/s11082-021-03013-8
D. Sharma, R. Mehra, and B. Raj, Comparative study of hole transporting layers commonly used in highefficiency perovskite solar cells, Journal of Materials Science 57 (2022) 21172, https://doi.org/10.1007/s10853-022-07958-3
D. Ti et al., Conjugated Polymers as Hole Transporting Materials for Solar Cells, Chinese Journal of Polymer Science 38 (2020) 449, https://doi.org/10.1007/s10118-020-2369-y
J. Liu et al., Toward efficient hybrid solar cells comprising quantum dots and organic materials: progress, strategies, and perspectives, Journal of Materials Chemistry A 11 (2023) 1013, https://doi.org/10.1039/D2TA07671C
N. Balis et al., A solid-state hybrid solar cell made of nc-TiO2, CdS quantum dots, and P3HT with 2-amino-1- methylbenzimidazole as an interface modifier, The Journal of Physical Chemistry C 115 (2011) 10911, https://doi.org/10.1021/jp2022264
J. Qian et al., P3HT as hole transport material and assistant light absorber in CdS quantum dots-sensitized solid-state solar cells, Chemical Communications 47 (2011) 6461, https://doi.org/10.1039/C1CC11595B
S. Yılmaz et al., Fabrication of CdS nanospheres-based hybrid solar cells having increased efficiency, Applied Physics A 128 (2022) 183, https://doi.org/10.1007/s00339-022-05317-2
Y. Li et al., Performance improvement of P3HT/TiO2 coaxial heterojunction polymer solar cells by introducing a CdS interface modifier, Journal of Solid-State Chemistry 196 (2012) 349, https://doi.org/10.1016/j.jssc.2012.06.041
Y. Nan et al., Performance enhancement of CdS nanorod arrays/ P3HT hybrid solar cells via N719 dye interface modification, Chinese Journal of Polymer Science 31 (2013) 879, https://doi.org/10.1007/s10118-013-1274-z
J. Santos-Cruz et al., Divulging the role of Cu doped CdS nanocrystals as an electron acceptor in hybrid solar cells, Materials Letters 312 (2022) 131719, https://doi.org/10.1016/j.matlet.2022.131719
S. Prabakaran et al., Synergistic effect and enhanced electrical properties of TiO2/SnO2/ZnO nanostructures as electron extraction layer for solar cell application, Applied Surface Science 498 (2019) 143702, https://doi.org/10.1016/j.apsusc.2019.143702
K. Ellmer, R. Mientus, and S. Seeger, Metallic Oxides (ITO, ZnO, SnO2, TiO2), In D. Levy and E. Castellon, eds., ´ Transparent Conductive Materials (Wiley-VCH, 2018), https://doi.org/10.1002/9783527804603.ch2_1
N. Sultana et al., Unveiling the structures and electronic properties of CH3NH3PbI3 interfaces with TiO2, ZnO, and SnO2: a first-principles study, Journal of Materials Science 54 (2019) 13594, https://doi.org/10.1007/s10853-019-03867-0
M. I. Ahamed, M. Ahamed, and R. Muthaiyan, Modelling of density of states and energy level of chalcogenide quantum dots, International Review of Applied Sciences and Engineering 13 (2021) 42, https://doi.org/10.1556/1848.2021.00288
V. G. Litovchenko and A. A. Grygoriev, Determination of the electron affinity (work function) of semiconductor nanocrystals, Ukrains’kyi Fizychnyi Zhurnal 52 (2007) 897
E. Kuc¸ur et al., Determination of Defect States in Semiconductor Nanocrystals by Cyclic Voltammetry, The Journal of Physical Chemistry B 109 (2005) 20355, https://doi.org/10.1021/jp053891b
L. E. Greene et al., ZnOTiO2 CoreShell Nanorod/P3HT Solar Cells, The Journal of Physical Chemistry C 111 (2007) 18451, https://doi.org/10.1021/jp077593l
F. Wu et al., Changes of Voc in hybrid solar cells by TiO2 nanoarray with different crystallinity of shell, Journal of The Electrochemical Society 161 (2014) H593, https://doi.org/10.1149/2.0161410jes
S. S. Williams et al., Nanostructured TitaniaPolymer Photovoltaic Devices Made Using PFPE-Based Nano molding Techniques, Chemistry of Materials 20 (2008) 5229, https://doi.org/10.1021/cm800729q
M. K. Hossain et al., Numerical analysis in dft and scaps- 1d on the influence of different charge transport layers of cspbbr3 perovskite solar cells, Energy & Fuels 37 (2023) 6078, https://doi.org/10.1021/acs.energyfuels.3c00035
M. B. Rahman et al., Selection of a compatible electron transport layer and hole transport layer for the mixed perovskite FA0.85Cs0.15Pb (I0.85Br0.15)3, towards achieving novel structure and high-efficiency perovskite solar cells: a detailed numerical study by SCAPS-1D, RSC Advances 13 (2023) 17130, https://doi.org/10.1039/D3RA02170J
S. Barthwal et al., Band offset engineering in antimony sulfide (Sb2S3) solar cells, using SCAPS simulation: A route toward PCE > 10%, Optik 282 (2023) 170868, https://doi.org/10.1016/j.ijleo.2023.170868
Z. Li, P. Graziosi, and N. Neophytou, Electron and Hole Mobility of SnO2 from Full-Band Electron-Phonon and Ionized Impurity Scattering Computations, Crystals 12 (2022) 1591, https://doi.org/10.3390/cryst12111591
W. Henni et al., Effect of introducing Al2O3 as a tunnelling layer into p-CBTS/n-CdS heterojunction solar cells, Journal of Computational Electronics 22 (2023) 897, https://doi.org/10.1007/s10825-023-02031-x
N. Jayah et al., High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature, Nanoscale Research Letters 10 (2015) 7, https://doi.org/10.1186/s11671-014-0715-0
B. Walker et al., Solution-processed CdS transistors with high electron mobility, RSC Advances 4 (2014) 3153, https:// doi.org/10.1039/C3RA44436H
V. Skrypnychuk et al., Ultrahigh Mobility in an Organic Semiconductor by Vertical Chain Alignment, Advanced Materials 28 (2016) 2359, https://doi.org/10.1002/adma.201503422
K. Mamta, Maurya, and V. Singh, Sb2Se3 as an HTL for Mo/Sb2Se3/Cs2TiF6/TiO2 solar structure: performance evaluation with SCAPS-1D, Heliyon 8 (2022) e10925, https://doi.org/10.1016/j.heliyon.2022.e10925
S. Zyoud et al., Numerical Modeling of High Conversion Efficiency FTO/ZnO/CdS/CZTS/MO Thin Film-Based Solar Cells: Using SCAPS-1D Software, Crystals 11 (2021) 1468, https://doi.org/10.3390/cryst11121468
L. Chen, C. Fang, and W. Liu, Influence of Absorption Layer Thickness on the Performance of CIGS Solar Cells, IOP Conference Series: Earth and Environmental Science 440 (2020) 032051, https://doi.org/10.1088/1755-1315/440/3/032051
R. Street, K. Song, and S. Cowan, Influence of series resistance on the photocurrent analysis of organic solar cells, Organic Electronics 12 (2011) 244, https://doi.org/10.1016/j.orgel.2010.11.012
J. R. Tumbleston et al., Nonideal parasitic resistance effects in bulk heterojunction organic solar cells, Journal of Applied Physics 108 (2010) 084514, https://doi.org/10.1063/1.3494100
R. Jeyakumar et al., Influence of Electron Transport Layer (TiO2) Thickness and Its Doping Density on the Performance of CH3NH3PbI3-Based Planar Perovskite Solar Cells, Journal of Electronic Materials 49 (2020) 3533, https://doi.org/10.1007/s11664-020-08041-w
M. Hossain et al., An extensive study on multiple ETL and HTL layers to design and simulation of high-performance leadfree CsSnCl3-based perovskite solar cells, Scientific Reports 13 (2023) 2521, https://doi.org/10.1038/s41598-023-28506-2
H. Chen et al., Towards high-efficiency planar heterojunction antimony sulfide solar cells, Optical Materials 121 (2021) 111556, https://doi.org/10.1016/j.optmat.2021.111556
B. Korir, J. Kibet, and S. Ngari, Computational Simulation of a Highly Efficient Hole Transport-Free Dye-Sensitized Solar Cell Based on Titanium Oxide (TiO2) and Zinc Oxysulfide (ZnOS) Electron Transport Layers, Journal of Electronic Materials 50 (2021) 7259, https://doi.org/10.1007/s11664-021-09250-7
T. Ouslimane et al., Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material, Heliyon 7 (2021) e06379, https://doi.org/10.1016/j.heliyon.2021.e06379
H.-J. Du, W.-C. Wang, and J.-Z. Zhu, Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency, Chinese Physics B 25 (2016) 108802, https://doi.org/10.1088/1674-1056/25/10/108802
D. KC et al., Impact of Different Antireflection Layers on Cadmium Telluride (CdTe) Solar Cells: a PC1D Simulation Study, Journal of Electronic Materials 50 (2021) 2199, https://doi.org/10.1007/s11664-020-08696-5
P. Roy et al., Influence of defect density and layer thickness of absorption layer on the performance of tin-based perovskite solar cell, In IOP Conference Series: Materials Science and Engineering, 798 (2020) 012020, https://doi.org/10.1088/1757-899X/798/1/012020
E. Danladi et al., Optimization of absorber and ETM layer thickness for enhanced tin-based perovskite solar cell performance using SCAPS-1D software, Physics Access 2 (2022) 1, https://doi.org/10.47514/phyaccess.2022.2.1.001
H. Chen et al., Towards high-efficiency planar heterojunction antimony sulfide solar cells, Optical Materials 121 (2021) 111556, https://doi.org/10.1016/j.optmat.2021.111556
P. Singh and N. Ravindra, Temperature dependence of solar cell performance-an analysis, Solar Energy Materials and Solar Cells 101 (2012) 36, https://doi.org/10.1016/j.solmat.2012.02.019
N. Wu et al., Identifying the cause of voltage and fill factor losses in perovskite solar cells by using luminescence measurements, Energy Technology 5 (2017) 1827, https://doi.org/10.1002/ente.201700374
M. Ulum, E. Sesa, and W. Belcher, The effect of active layer thickness on P3HT: PCBM nanoparticulate organic photovoltaic device performance, In Journal of Physics: Conference Series 1242 (2019) 012025, https://doi.org/10.1088/1742-6596/1242/1/012025
M. Zidan, T. Ismail, and I. Fahim, Effect of thickness and temperature on flexible organic P3HT: PCBM solar cell performance, Materials Research Express 8 (2021) 095508, https://doi.org/10.1088/2053-1591/ac2773
P. Morvillo et al., Effect of the Active Layer Thickness on the Device Performance of Polymer Solar Cells Having [60]PCBM and [70]PCBM as Electron Acceptor, Energy Procedia 31 (2012) 69, https://doi.org/10.1016/j.egypro.2012.11.166
A. Umar et al., High Power-Conversion Efficiency of LeadFree Perovskite Solar Cells: A Theoretical Investigation, Micromachines 13 (2022) 2201, https://doi.org/10.3390/mi13122201
R. N. Mohottige and S. P. Kalawila Vithanage, Numerical simulation of a new device architecture for CIGSbased thinfilm solar cells using 1D-SCAPS simulator, Journal of Photochemistry and Photobiology A: Chemistry 407 (2021) 113079, https://doi.org/10.1016/j.jphotochem.2020.113079
N. Amin et al., Prospects of back surface field effect in ultra-thin high-efficiency CdS/CdTe solar cells from numerical modeling, International Journal of Photoenergy 2010 (2011) 578580, https://doi.org/10.1155/2010/578580
F. Jhuma, M. Shaily, and M. Rashid, Towards high-efficiency CZTS solar cell through buffer layer optimization, Materials for Renewable and Sustainable Energy 8 (2019) 6, https://doi.org/10.1007/s40243-019-0144-1
F. Rabouw and C. de Mello Donega, Excited-State Dynamics in Colloidal Semiconductor Nanocrystals, Topics in Current Chemistry 374 (2016) 58, https://doi.org/10.1007/s41061-016-0060-0
V. Klimov et al., Single-exciton optical gain in semiconductor nanocrystals, Nature 447 (2007) 441, https://doi.org/10.1038/nature05839
P. Kumar et al., Synthesis Of Mercaptopropionic Acid Stabilized CdS Quantum Dots for Bioimaging In Breast Cancer, Advanced Materials Letters 3 (2012) 471, https://doi.org/10.5185/amlett.2012.icnano.296
H. Abdalmageed, M. Fedawy, and M. Aly, Effect of absorber layer bandgap of CIGS-based solar cell with (CdS/ZnS) buffer layer, In Journal of Physics: Conference Series, vol. 2128 (2021) p. 012009, https://doi.org/10.1088/1742-6596/2128/1/012009
A. Chaves et al., Bandgap engineering of two-dimensional semiconductor materials, npj 2D Materials and Applications 4 (2020) 29, https://doi.org/10.1038/s41699-020-00162-4
G. A. Nowsherwan et al., Numerical optimization and performance evaluation of ZnPC:PC70BM based dye-sensitized solar cell, Scientific Reports 13 (2023) 10431, https://doi.org/10.1038/s41598-023-37486-2
W. Yoon et al., Enhanced Open-Circuit Voltage of PbS Nanocrystal Quantum Dot Solar Cells, Scientific Reports 3 (2013) 10413, https://doi.org/10.1038/srep02225
A. Ahmed et al., Performance optimization of CH3NH3Pb(I1- xBrx)3 based perovskite solar cells by comparing different ETL materials through conduction band offset engineering, Optical Materials 105 (2020) 109897, https://doi.org/10.1016/j.optmat.2020.109897
T. Hossain et al., Tuning the bandgap of Cd1-xZnxS (x = 0 1) buffer layer and CIGS absorber layer for obtaining high efficiency, Superlattices and Microstructures 161 (2022) 107100, https://doi.org/10.1016/j.spmi.2021.107100
Y. Qi et al., Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu, Ag)2ZnSn(S, Se)4 solar cells, Energy Environmental Science 10 (2017) 2401, https://doi.org/10.1039/C7EE01405H
T. A. Ngoupo, S. Ouedraogo, and J. Ndjaka, Numerical analysis of interface properties effects in CdTe/CdS:O thin film solar cell by SCAPS-1D, Indian Journal of Physics 93 (2019) 869, https://doi.org/10.1007/s12648-018-01360-z
S. Z. Haider et al., A comparative study of interface engineering with different hole transport materials for high-performance perovskite solar cells, Journal of Physics and Chemistry of Solids 136 (2020) 109147, https://doi.org/10.1016/j.jpcs.2019.109147
F. Izadi et al., Effect of interface defects on high efficient perovskite solar cells, Optik 227 (2021) 166061, https://doi.org/10.1016/j.ijleo.2020.166061
D. Gupta, S. Mukhopadhyay, and K. Narayan, Fill factor in organic solar cells, Solar Energy Materials and Solar Cells 94 (2010) 1309, https://doi.org/10.1016/j.solmat.2008.06.001
T. Song, A. Kanevce, and J. R. Sites, Emitter/absorber interface of CdTe solar cells, Journal of Applied Physics 119 (2016) 233104, https://doi.org/10.1063/1.4953820
S. S. Surah et al., Tuning the electronic band alignment properties of TiO2 nanotubes by boron doping, Results in Physics 12 (2019) 1725, https://doi.org/10.1016/j.rinp.2019.01.081
T. Ghorbani et al., Influence of affinity, band gap and ambient temperature on the efficiency of CIGS solar cells, Optik 223 (2020) 165541, https://doi.org/10.1016/j.ijleo.2020.165541
P. Patel, Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell, Scientific Reports 11 (2021) 3082, https://doi.org/10.1038/s41598-021-82817-w
L. Lin et al., Work function: Fundamentals, measurement, calculation, engineering, and applications, Physical Review Applied 19 (2023) 037001, https://doi.org/10.1103/PhysRevApplied.19.037001
K. Kumari, T. Chakrabarti, and S. K. Sarkar, Metal oxide nanoparticles as an electron-transport layer in perovskite solar cell, Optical Materials 142 (2023) 114047, https://doi.org/10.1016/j.optmat.2023.114047
N. Noorasid et al., Improved performance of lead-free Perovskite solar cell incorporated with TiO2 ETL and CuI HTL using SCAPs, Applied Physics A 129 (2023) 132, https://doi.org/10.1007/s00339-022-06356-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M. Seddar Yagoub, M. Adnane
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.