First principles calculations of physical properties of the CeCu2Si2 material
DOI:
https://doi.org/10.31349/RevMexFis.70.061002Keywords:
CeCu2Si2; DFT; optical properties; thermoelectric properties; thermodynamic propertiesAbstract
Using local density approximation functional computations, LSDA (local spin density approximation) and mBJ (modified Becke-Johnson) for exchange-correlation interactions, we examined the combination CeCu2Si2, concentrating on its many physical properties. This work used the WC-GGA method to compute the elastic characteristics of CeCu2Si2 material, and the results indicate that unstrained CeCu2Si2 is more brittle. The density of states exhibits the metallic character of the chemical, in agreement with the inference made from the band structure. We also assessed several optical characteristics, such as real and imaginary optical conductivity, electronic energy loss, absorption coefficient, refractive index, and extinction coefficient. We also looked at the electronic components of thermal conductivity, electrical conductivity, Seebeck coefficient, and electronic conductivity. The compound's Seebeck coefficient values are negative, indicating p-type behavior. A thorough analysis of the data is presented, along with important details regarding the CeCu2Si2 compound's characteristics.
References
S. Gundogdu et al., Magnetic order and competition with superconductivity in (Ho-Er)Ni2B2C, Mater. Res. Express, 7 (2020) 116002, https://doi.org/10.1088/2053-1591/abc998
A. P. Menushenkov et al., The Influence of Hydrostatic Pressure on Intermediate Europium Valence State in Compound EuCu2Ge2, Physics Procedia, 71 (2015) 308
M. Smidman et al., Colloquium: Unconventional fully gapped superconductivity in the heavy-fermion metal CeCu2Si2, Rev. Mod. Phys. 95 (2023) 031002
T. Jarlborg, H.F. Braun, and M. Peter, Structural properties and band structure of heavy fermion systems: CeCu2Si2 and LaCu2Si2, Z. Für Phys. B Condens. Matter. 52 (1983) 295
J. Ballinger, L. E. Wenger, Y. K. Vohra, and A. S. Sefat, Magnetic Properties of Single Crystal EuCo2As2, Journal of Applied Physics, 111 (2012) 07E106
You Lai et al., Electronic landscape of the f-electron intermetallics with the ThCr2Si2 structure. Sci. Adv., 8 (2022) eabp8264
M. Bishop et al., Formation of Collapsed Tetragonal Phase in EuCo2As2 under High Pressure, Journal of Physics. Condensed Matter: An Institute of Physics Journal, 22 (2010) 425701
M. Hasegawa, S. Suzuki, N. Yoneyama, A. Inoue, and N. Kobayashi, Synthesis and magnetic and electronic properties of metastable non-stoichiometric ThCr2Si2-type ternary Ce-NiGe compound, J. Phys. Condens. Matter. 17 (2005) 7177
M. Islam, Md. A. Rahman, and N. Farjana, The Physical Properties of ThCr2Si2 -Type Co-based Compound SrCo2Si2: An ab-initio Study, Int. Journal of Material and Mathematical Sciences, 3 (2021) 50
M. A. Rahman et al., The physical properties of ThCr2Si2-type nickel-based superconductors BaNi2T2 (T= P, As): an ab-initio study. Chinese Journal of Physics, 59 (2019) 58-69
M. U. Salma, and M. A. Rahman, Physical properties of ThCr2Si2-type Rh-based compounds ARh2Ge2(A = Ca, Sr, Y and Ba): DFT based first-principles investigation, Int. J. Mod. Phys. B. 32 (2018) 1850357
H. Kunioka et al., Thermoelectric Properties of (Ba,K)Zn2As2 Crystallized in the ThCr2Si2-type Structure, Inorg. Chem. 59 (2020) 5828
S. Benyoussef, A. Jabar, and L. Bahmad, The magnetocaloric, magnetic, optical, and thermoelectric properties of EuB6 compound: DFT and Monte Carlo study. Journal of the American Ceramic Society, 107 (2024) 945-955
A. Jabar, L. Bahmad, and S. Benyoussef, Study of Physical Properties of the Quaternary Full-Heusler alloy: FeMnCuSi, J. Alloys Compd. 947 (2023) 169604
A. Jabar, H. Labrim, L. Larbi, B. Jaber, and S. Benyoussef, Study of physical properties of the new inorganic perovskites LiSnX3 (X= Br or I): A DFT approach, Mod. Phys. Lett. B. 37 (2023) 2350132
A. Jabar, L. Bahmad, and S. Benyoussef, Structural, optical, elastic, thermoelectric and thermodynamic properties of the IrMn material: A DFT study, Mod. Phys. Lett. B. (2023)
H. Labrim et al., Optoelectronic and Thermoelectric Properties of the Perovskites: NaSnX3 (X = Br or I)-A DFT Study, J. Inorg. Organomet. Polym. Mater. 33 (2023) 3049
A. Jabar, Y. Selmani, L. Bahmad, and S. Benyoussef, First-principles calculations of physical properties of the tungsten dichalcogenides (WSe2 and WTe2), Chem. Pap. (2023). https://doi.org/10.1007/s11696-023-03104-8
S. Benyoussef, A. Jabar, and L. Bahmad, Biaxial and Uniaxial Tensile Strains Effects on Electronic, Optical, and Thermoelectric Properties of ScBiTe3 Compound, Cryst. Res. Technol. (2023). https://doi.org/10.1002/crat.202300069
A. Jabar, L. Bahmad and S. Benyoussef, A DFT and Monte Carlo studies of physical properties of the Fe2N compound, Ferroelectrics. 614 (2023) 103.
P. Blaha, K. Schwarz, P. Sorantin and S.B. Trickey, Fullpotential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun. 59 (1990) 399
J. P. Perdew, Orbital functional for exchange and correlation: self-interaction correction to the local density approximation, Chem. Phys. Lett. 64 (1979) 127
G. K. H. Madsen and D. J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175 (2006) 67
C. Chong, H. Liu, S. Wang and K. Yang, First-Principles Study on the Effect of Strain on Single-Layer Molybdenum Disulfide, Nanomaterials. 11 (2021) 3127
V. Tyuterev and N. Vast, Murnaghan’s equation of state for the electronic ground state energy, Comput. Mater. Sci. 38 (2006) 350
Z. Wu, and R. E. Cohen, Phys. Rev. B, 73 (2006) 235116
X. Yu, Z. Ma, Suriguge, and P. Wang, Theoretical Investigations of the Hexagonal Germanium Carbonitride, Materials. 11 (2018) 655
Q. Long et al., C15NbCr2 Laves phase with mechanical properties beyond Pugh’s criterion, Comput. Mater. Sci. 121 (2016) 167
Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure, Comput. Mater. Sci. 38 (2006) 29
S. Padmavathi, R. John, Spin polarized first principles calculations on electronic, magnetic and optical properties of Zn(1- x)AxS (A=Cr/Mn/Fe) using mBJ approximation, Mater. Sci. Eng. B. 248 (2019) 114401
S. K. Sharma, Debye temperature of hcp iron at extreme compression, Solid State Commun. 149 (2009) 2207
A. Otero-de-la-Roza, D. Abbasi-Pérez, V. Luaña, Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation, Comput. Phys. Commun. 182 (2011) 2232
G. Qin, A. Huang, Y. Liu, H. Wang, Z. Qin, X. Jiang, J. Zhao, J. Hu, M. Hu, High-throughput computational evaluation of lattice thermal conductivity using an optimized Slack model, Mater. Adv. 3 (2022) 6826
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A. Jabar, S. Idrissi, N. Tahiri, L. Bahmad
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.