Ab initio investigation of structural, elastic, dynamic, and electronic properties of YN binary rare earth nitride in ZB cubic phase

Authors

  • Asma Kadri University of Science and Technology Mohamed Boudiaf
  • Hayet Sediki University of Oran 1, Ahmed Ben Bella
  • Said Hiadsi University of Science and Technology Mohamed Boudiaf
  • Mokhtar Elchikh University of Science and Technology of Oran

DOI:

https://doi.org/10.31349/RevMexFis.70.060502

Keywords:

DFT, DFPT, FP-LAPW, PP-PW, phonons, GGA, YN

Abstract

This research employs ab initio calculations, utilizing the FP-LAPW method as implemented in WIEN2k and the PP-PW method in QUANTUM ESPRESSO, within the framework of the GGA-PBE approximation, to investigate the physical properties of the rare earth nitride binary YN. Structural parameters of YN are determined, yielding predictive results consistent with recent calculations. Furthermore, a comprehensive investigation into mechanical behavior and elastic properties confirms the mechanical stability of YN in its cubic ZB structure. An analysis of the anisotropy coefficient reveals its elastic anisotropy. The dynamic stability of YN is investigated through PW-scf calculations using DFPT theory, enabling the calculation of phonon spectra, frequencies, and polarization vectors. These findings affirm the stability of YN material in the B3 structure, which can be experimentally synthesized.  Electronic properties are probed, showing semiconductor behavior, utilizing GGA mBJ, and YS PBE0 methods to ascertain band gap values in the B3 structure. This suggests its potential for adoption in optoelectronic and photonic devices.

References

Baghdad, A. H., Bouafia, H., Djebour, B., Sahli, B., Hiadsi, S., Elchikh, M., & Attou, M. (2022). Study of phase transitions and lattice dynamics, elastic and electronic properties, bonding and weak interactions analysis of YCuS2 in P212121, I4‾ 2d and P4‾ 21m space group structures. Journal of Physics and Chemistry of Solids, 167, 110756.

Aerts, C. M., Strange, P., Horne, M., Temmerman, W. M., Szotek, Z., & Svane, A. (2004). Half-metallic to insulating behavior of rare-earth nitrides. Physical Review B, 69(4), 045115.

Tie-Yu, L., & Mei-Chun, H. (2007). Electronic structure of ScN and YN: density-functional theory LDA and GW approximation calculations. Chinese Physics, 16(1), 62.

Ruck, B. J. (2011). SPINTRONICS POTENTIAL OF RARE-EARTH NITRIDES. In Nanomagnetism And Spintronics: Fabrication, Materials, Characterization and Applications (pp. 193-221).

Murugan, A., Priyanga, G. S., Rajeswarapalanichamy, R., & Iyakutti, K. (2016). Structural, electronic, mechanical and magnetic properties of rare-earth nitrides REN (RE= Ce, Pr, Nd): A first principles study. Materials Science in Semiconductor Processing, 41, 17-25.

Cortie, D. L., Brown, J. D., Brück, S., Saerbeck, T., Evans, J. P., Fritzsche, H., ... & Klose, F. (2014). Intrinsic reduction of the ordered 4 f magnetic moments in semiconducting rare-earth nitride thin films: DyN, ErN, and HoN. Physical Review B, 89(6), 064424.

Haoui, A., Elchikh, M., & Hiadsi, S. (2023). Mechanical, optoelectronic and thermoelectric properties of the transition metal oxide perovskites ysco3 and lasco3: first principle calculation. Physica B: Condensed Matter, 654, 414732.

Mankad, V., Gupta, S. K., & Jha, P. K. (2012). Ab initio investigation on structural, electronic and lattice dynamical properties of MgN and GdN crystals. Results in Physics, 2, 34-40.

Kadri, A., Hiadsi, S., Elchikh, M., & Bahlouli, S. (2023). Investigation of structural, mechanical, dynamic stability and electronic properties of anti-perovskite nitrides ANLa3 (A= Al, Ga): a DFT and DFPT studies. Physica Scripta, 98(5), 055931.

Granville, S., Meyer, C., Preston, A. R. H., Ludbrook, B. M., Ruck, B. J., Trodahl, H. J., ... & Lambrecht, W. R. L. (2009). Vibrational properties of rare-earth nitrides: Raman spectra and theory. Physical Review B, 79(5), 054301.

Natali, F., Ruck, B. J., Plank, N. O., Trodahl, H. J., Granville, S., Meyer, C., & Lambrecht, W. R. (2013). Rare-earth mononitrides. Progress in Materials Science, 58(8), 1316-1360.

Upadhya, K., Kumar, R., Baral, M., Tripathi, S., Jha, S. N., Ganguli, T., & Saha, B. (2022). Electronic structure of rare-earth semiconducting ErN thin films determined with synchrotron radiation photoemission spectroscopy and first-principles analysis. Physical Review B, 105(7), 075138.

Aerts, C. M., Strange, P., Horne, M., Temmerman, W. M., Szotek, Z., & Svane, A. (2003). The Spintronic Properties of Rare Earth Nitrides. arXiv preprint cond-mat/0308354.

Ghimire, M. P., & Thapa, R. K. (2011). Magnetic and Electronic Structure Calculations of Rare-Earth Nitrides. Journal of Materials Science and Engineering. A, 1(1A), 53.

O'Donnell, K. P., & Hourahine, B. (2006). Rare earth doped III-nitrides for optoelectronics. The European Physical Journal-Applied Physics, 36(2), 91-103.

Haq, B. U., Afaq, A., Abdellatif, G., Ahmed, R., Naseem, S., & Khenata, R. (2015). First principles study of scandium nitride and yttrium nitride alloy system: prospective material for optoelectronics. Superlattices and Microstructures, 85, 24-33.

Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285-1303.

Yang, J., Gao, F., Wang, H., Gou, H., Hao, X., & Li, Z. (2010). Elastic properties and hardness calculations of lanthanide nitrides in rocksalt structure. Materials Chemistry and Physics, 119(3), 499-504.

Hirayama, Y., Suzuki, K., Fujita, A., & Takagi, K. (2019). Experimental investigation of nitrogenation process for heavy rare earth nitrides from their hydrides. AIP advances, 9(4).

Makkar, P., & Ghosh, N. N. (2021). A review on the use of DFT for the prediction of the properties of nanomaterials. RSC advances, 11(45), 27897-27924.

Glossman-Mitnik, D. (Ed.). (2022). Density Functional Theory: Recent Advances, New Perspectives and Applications.

Guan, B., Jiang, H., Wei, Y., Liu, Z., Wu, X., Lin, H., & Huang, Z. (2021). Density functional theory researches for atomic structure, properties prediction, and rational design of selective catalytic reduction catalysts: Current progresses and future perspectives. Molecular Catalysis, 510, 111704.

Kadri, A., Bouafia, H., & Hiadsi, S. (2023). Energetic, mechanical and dynamical stability, electronic and bonding properties of new antiperovskite nitrides Y3AlN and Y3GaN: DFT and QTAIM investigation. Physica B: Condensed Matter, 667, 415212.

Madsen, G. K., Blaha, P., Schwarz, K., Sjöstedt, E., & Nordström, L. (2001). Efficient linearization of the augmented plane-wave method. Physical Review B, 64(19), 195134.

Blaha, P., Schwarz, K., Madsen, G. K., Kvasnicka, D., & Luitz, J. (2001). wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties, 60(1).

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical review B, 13(12), 5188.

Baroni, S., Giannozzi, P., & Testa, A. (1987). Green’s-function approach to linear response in solids. Physical review letters, 58(18), 1861.

Baroni, S., De Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of modern Physics, 73(2), 515.

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., ... & Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502.

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.

Kittel, C., & McEuen, P. (2018). Introduction to solid state physics. John Wiley & Sons.

Murnaghan, F. D. (1944). The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247.

Mancera, L., Rodriguez, J. A., & Takeuchi, N. (2003). First principles calculations of the ground state properties and structural phase transformation in YN. Journal of Physics: Condensed Matter, 15(17), 2625.

Rowberg, A. J. E., Mu, S., Swift, M. W., & Van de Walle, C. G. (2021). Structural, electronic, and polarization properties of YN and LaN. Physical Review Materials, 5(9), 094602.

Born, M. (1940, April). On the stability of crystal lattices. I. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 36, No. 2, pp. 160-172). Cambridge University Press.

Born, M., & Misra, R. D. (1940). Mathematical proceedings of the cambridge philosophical society.

Ghebouli, M. A., Ghebouli, B., Zeghad, A., Chihi, T., Fatmi, M., & Ahmed, S. I. (2021). First-principles calculations to investigate structural, elastic, electronic, lattice dynamic and optical properties for scandium and yttrium nitrides in zinc blend structure. journal of materials research and technology, 14, 1958-1968.

Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823-843.

Panwar, V., & Pal, K. (2017). Dynamic mechanical analysis of clay–polymer nanocomposites. In Clay-polymer nanocomposites (pp. 413-441). Elsevier.

Khatri, P., & Huda, M. N. (2014). Application of attractive potential by DFT+ U to predict the electronic properties of materials without highly localized bands. Computational materials science, 81, 290-295.

Becke, A. D., & Johnson, E. R. (2006). A simple effective potential for exchange. The Journal of chemical physics, 124(22).

Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2003). Hybrid functionals based on a screened Coulomb potential. The Journal of chemical physics, 118(18), 8207-8215.

Downloads

Published

2024-11-01

How to Cite

[1]
A. Kadri, H. Sediki, S. Hiadsi, and M. Elchikh, “Ab initio investigation of structural, elastic, dynamic, and electronic properties of YN binary rare earth nitride in ZB cubic phase”, Rev. Mex. Fís., vol. 70, no. 6 Nov-Dec, pp. 060502 1–, Nov. 2024.