A non-newtonian approach to geometric phase through optic fiber via multiplicative quaternions
DOI:
https://doi.org/10.31349/RevMexFis.70.061301Keywords:
Multiplicative calculus, Non-Newtonian calculus, Magnetic flows, Electromagnetic theory, Ordinary differential equationsAbstract
In this paper, we researched magnetic and electromagnetic curves in multiplicative Euclidean 3-space via multiplicative quaternion algebra. Firstly, we examined the geometric phase representation of the polarized light wave in the optic fiber by multiplicative Frenet frame. Using the quaternionic approaches, we were able to derive the magnetic curve equations and theorems. Then, three particular instances have been illustrated with examples of electromagnetic curves and magnetic field equations. Lastly, we provided an interpretation of the findings. With the help of the results, we were able to present an alternative viewpoint on the construction of trajectories (such as circular or spiral-like ones) that do not exist uniquely in the realm of physics.
References
M. Grossman, R. Katz, Non-Newtonian Calculus. 1st. ed. (Lee Press. Pigeon Cove, Massachussets, 1972)
M. Grossman, An introduction to non-newtonian calculus. Int. J. Math. Educ. Sci. Technol. 10(4) (1979) 525-528, https://doi.org/10.1080/0020739790100406
M. Grossman, Bigeometric Calculus: A System with a Scale-Free Derivative. (Archimedes Foundation, Massachussets, 1983)
D. Stanley, A multiplicative calculus. PRIMUS, 9(4) (1999) 310-326, https://doi.org/10.1080/10511979908965937
D. Aniszewska, Multiplicative Runge-Kutta Methods. Nonlinear Dynamics, 50 (2007) 262-272 https://doi.org/10.1007/s11071-006-9156-3
D. Aniszewska, M. Rybaczuk, Analysis of the multiplicative Lorentz system. Chaos, Solitons and Fractals, 25 (2005) 79-90 https://doi.org/10.1016/j.chaos.2004.09.060
A. Bashirov, M. Riza, On complex multiplicative differentiation. TWMS Journal of Applied and Engineering Mathematics, 1(1) (2011) 75-85
A. E. Bashirov, E. M. Kurpınar, A. Ozyapıcı, Multiplicative calculus and its applications. J. Math. Anal. Appl. 337(1) (2008) 36-48, https://doi.org/10.1016/j.jmaa.2007.03.081
L. Florack, H. van Assen, Multiplicative calculus in biomedical image and analysis. J. Math. Im. Vis. 42 (2012) 64-75, https://doi.org/10.1007/s10851-011-0275-1
M. Mora, F. Cordova-Lepe, R. Del-Valle R, 2012 A nonNewtonian gradient for contour detection in images with multiplicative noise. Pattern Recognition Letters, 33(10) (2012) 1245-1256, https://doi.org/10.1016/j.patrec.2012.02.012
K. Boruah, B. Hazarika, Application of geometric calculus in numerical analysis and difference sequence spaces. J. Math. Anal. Appl. 449(2) (2017) 1265-1285, https://doi.org/10.1016/j.jmaa.2016.12.066
K. Boruah, B. Hazarika, G-calculus. TWMS J. Appl. Eng. Math. 8(1) (2018) 94-105
S. G. Georgiev, Multiplicative Differential Geometry. 1st. ed., (Chapman and Hall/CRC., New York 2022)
S. G. Georgiev, K. Zennir, Multiplicative Differential Calculus. 1st. ed., (Chapman and Hall/CRC., New York, 2022)
S. G. Georgiev, K. Zenni, A. Boukarou, Multiplicative Analytic Geometry. 1st ed., (Chapman and Hall/CRC., New York, 2022)
S. Aslan, M. Bekar, Y. Yaylı, 2023 Geometric 3-space and multiplicative quaternions. Int. J. of Geo. Methods in Modern Physics. 20(9) (2023) 2350151, https://doi.org/10.1142/S0219887823501517
M. E. Aydin, A. Has, B. Yılmaz, A non-Newtonian approach in differential geometry of curves: multiplicative rectifying curves. Bull. Korean Math. Soc. 61(3) (2024) 849-866, https://doi.org/10.4134/BKMS.b230491
S. K. Nurkan, Argil, M. K. Karacan, Vector properties of geometric calculus. Math. Meth. Appl. Sci. (2023) 1-20, https://doi.org/10.1002/mma.9525
H. Ceyhan, Z.Özdemir, ˙I Gok, Multiplicative generalized tube ¨ surfaces with multiplicative quaternions algebra. Mathematical Methods in the Applied Sciences, 47(11) (2024) 9157-9168 http://doi.org/10.1002/mma.10065
Z. Özdemir, H. Ceyhan, Multiplicative hyperbolic split quaternions and generating geometric hyperbolical rotation matrices, Applied Mathematics and Computation, 479 (2024) 128862, https://doi.org/10.1016/j.amc.2024.128862
S. M. Rytov, 1938 Dokl. Akad. Nauk. SSSR 18, 263, reprinted in B. Markovski, S. I. Vinitsky, ((eds) Topological Phases in Quantum Theory, World Scientific, Singapore, 1989)
Y. A. Kravtsov, Y. I. Orlov, Geometrical Optics of Inhomogeneous Medium. (Nauka, Moscow, 1980; Springer-Verlag, Berlin, 1990)
J. N. Ross, 1984 The rotation of the polarization in low briefrigence monomode optical fibres due to geometric effects. Opt. Quantum Electron. 16(5) (1984) 455, https://doi.org/10.1007/BF00619638
M. V. Berry, Quantal phase factors accompanying adiabatic changes. (Proc. Roy. Soc. London. A 392, 45, 1984)
A. Comtet, On the Landau Hall levels on the hyperbolic plane. Ann. Phys. 173, (1987) 185, https://doi.org/10.1016/0003-4916(87)90098-4
M. Kugler, S. Shtrikman, 1988 Berry’s phase, locally inertial frames, and classical analogues. Phys. Rev. D. 37(4), (1988) 934, https://link.aps.org/doi/10.1103/PhysRevD.37.934
T. Sunada, Magnetic flows on a Riemann surface. (In Proceedings of the KAIST Mathematics Workshop: Analysis and Geometry, Taejeon, Korea 1993)
T. Adachi, Kahler magnetic on a complex projective space. Proc. Jpn. Acad. Ser. A Math. Sci. 70(1), (1994) 12-13, DOI: 10.3792/pjaa.70.12
T. Adachi, Kahler magnetic flow for a manifold of constant holomorphic sectional curvature. Tokyo J. Math. 18(2) (1995) 473-483, DOI: 10.3836/tjm/1270043477
M. Barros, General helices and a theorem of Lancret. Proc. Amer. Math. Soc. 125(5) (1997) 1503-1509, https://api.semanticscholar.org/CorpusID:17451334
E. M. Frins, W. Dultz, Rotation of the polarization plane in optical fibers. J. Lightwave Technol. 15(1), (1997) 144, doi:10.1109/50.552122
M. Barros, A. Romero, J. L. Cabrerizo, M. Fernández, The Gauss-Landau–Hall problem on Riemanniansurfaces. J. Math. Phys. 46 (2005) 112905, https://doi.org/10.1063/1.2136215
M. Barros, J. L. Cabrerizo, M. Fernández, A. Romero, Magnetic vortex filament flows. J. Math. Phys. 48 (2007) 1-27, https://doi.org/10.1063/1.2767535
J. L. Cabrerizo, M. Fernández, J. S. Gomez, 2009 On the existence of almost contact structure and the contact magnetic field. Acta Math. Hung. 125 (2009) 191-199, https://doi.org/10.1007/s10474-009-9005-1
J. L. Cabrerizo, M. Fernández, J. S. Gomez, The contact magnetic flow in 3D Sasakian manifolds. J. Phys. A: Math. Theor. 42 (2009) 195201, https://dx.doi.org/10.1088/1751-8113/42/19/195201
I. I. Satija, R. Balakrishnan, Geometric phases in twisted strips. Phys. Lett. A. 373(39) (2009) 3582, https://doi.org/10.1016/j.physleta.2009.07.083
S. L. Druta-Romaniuc, M. I. Munteanu, Magnetic Curves corresponding to Killing magnetic fields in E 3 . J. Math. Phys. 52 (2011) 113506, https://doi.org/10.1063/1.3659498
O. Yamashita, Effect of the geometrical phase shift on the spin and orbital angular momenta of light traveling in a coiled optical fiber with optical activity. Opt. Commun. 285(18) (2012) 3740-3747 https://doi.org/10.1016/j.optcom.2012.05.013
O. Yamashita, Geometrical phase shift of the extrinsic orbital angular momentum density of light propagating in a helically wound optical fiber. Opt. Commun. 285(13-14) (2012) 3061- 3065 https://doi.org/10.1016/j.optcom.2012.02.041
J. L. Cabrerizo, Magnetic fields in 2D and 3D sphere. J. Nonlinear Math. Phys. 20(3) (2013) 440-450 https://doi.org/10.1080/14029251.2013.855052
S. L. Druta-Romaniuc, M. I. Munteanu, Killing magnetic curves in a Minkowski 3-space. Nonlinear Anal. RealWorld Appl. 14 (2013) 383-396 https://doi.org/10.1016/j.nonrwa.2012.07.002
Z. Bozkurt, ˙I. Gok, Y. Yaylı F. N. Ekmekci, A new approach for magnetic curves in 3D Riemannian manifolds. J. Math. Phys. 55(5) (2014) 053501 https://doi.org/10.1063/1.4870583
Z. Özdemir, ˙I. Gok, Y. Yaylı F. N. Ekmekci, Notes on Magnetic Curves in 3D semi-Riemannian Manifolds. Turk. J. Math. 39(3) (2015) 412-426 https://doi.org/10.3906/mat-1408-31
T. Körpinar, R. C. Demırkol, Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D semiRiemannian manifold. Journal of Modern Optics, 66(8) (2019) 857-867, https://doi.org/10.1080/09500340.2019.1579930
H. Ceyhan, Z. Özdemir, ˙I Gok, F. N. Ekmekci, 2020 Electromagnetic Curves and Rotation of the Polarization Plane through Alternative Moving Frame. European Physical Journal Plus 135, (2020) https://doi.org/10.1140/epjp/s13360-020-00881-z
T. Körpinar, R. C. Demırkol, Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D Riemannian manifold with Bishop equations. Optik - International Journal for Light and Electron Optics. 200, (2020) 163334, https://doi.org/10.1016/j. ijleo.2019.163334
Z. Özdemir, A New Calculus for the Treatment of Rytov’s Law in the Optical Fiber. Optik-International Journal for Light and Electron Optics. 216 (2020) 164892, https://doi.org/10.1016/j.ijleo.2020.164892
H. Ceyhan, Z. Özdemir, ˙I. Gok, F. N. Ekmekci, A Geometric Interpretation of Polarized Light and Electromagnetic Curves Along an Optical Fiber with Surface Kinematics. Mediterr. J. Math. 19 (2022) 265, https://doi.org/10.1007/s00009-022-02160-w
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 H. Ceyhan, Z. Özdemir, S. Kaya, İ. Gürgil
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.