Transport of particles in a model of 2D Rayleigh-Benard convection that conserves energy and vorticity

Authors

  • R. Becerril Universidad Michoacana de San Nicolás de Hidalgo
  • M. Maya Universidad Michoacana de San Nicolás de Hidalgo

DOI:

https://doi.org/10.31349/RevMexFis.70.060601

Keywords:

Convection; Bifurcations; Transport

Abstract

In contrast with the Lorenz model for 2-dimensional Rayleigh - Bénard system, the model proposed by Howard - Krishnamurti (HK) allows the possibility of a large scale horizontally shear flow making feasible the study of particles transport. However, this model lacks conservation of energy and vorticity in the absence of forcing and dissipation. A model that incorporates conservation of energy and vorticity was proposed by A. Gluhovsky et al (GTA). We perform the linear stability analysis of this later model and study the transport process on this velocity field background and make a comparison with the features of the former model. We found that the basic bifurcation structure is retained by the GTA model and discuss the differences that they indeed have. In regard to the transport processes, the basic features found using the HK velocity field background are also kept by the GTA model. We determine the size of the rather small gap in the Rayleigh number where the transport process shift from being shear flow dominated to a Brownian diffusion process.

Author Biography

R. Becerril, Universidad Michoacana de San Nicolás de Hidalgo

Instituto de Fisica y Matematicas, Universidad Michiacana de San Nicolás de Hidalgo.

Profesor Investigador Titular C (tiempo completo)

References

E. Bodenschatz and W. Pesch G. Ahlers, Recent developments in Rayleigh- Benard convection, Annu. Rev. Fluid Mech. 32 (2000) 709, https://doi.org/10.1146/annurev.fluid.32.1.709

Y. Fan, Y. Zhao, J. F. Torres, F. Xu, C. Lei, Y. Li and J. Carmeliet, Natural convection over vertical and horizontal heated flat surfaces: A review of recent progress focusing on underpinnings and implications for heat transfer and environmental applications, Phys. Fluids 33 (2021) 101301, https://doi.org/10.1063/5.0065125

J. J. Song, P. X. Li, L. Chen, C. H. Li, B. W. Li, and L. Y. Huang, A review on Rayleigh-Benard convection influenced by the complicating factors, Int. Commun. Heat Mass Transf. 144 (2023) 106784, https://doi.org/10.1016/j.icheatmasstransfer.2023.106784

P. Manneville, Rayleigh-Benard convection: thirty years of experimental, theoretical, and modeling work, Springer Tr. Mod. Phys. 207 (2006) 41, https://doi.org/10.1007/978-0-387-25111-0_3

H. Benard, Etude experimentale des courants de convection dans une nappe liquide.-Regime permanent: tourbillons cellulaires, J. Phys. Theor. Appl. 9 (1900) 513, https://doi.org/10.1051/jphystap:019000090051300

L. Rayleigh, On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side, London Edinburgh Philos. Mag. & J. Sci. 32 (1916) 529, https://doi.org/10.1080/14786441608635602

E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963) 130, https://doi.org/10.1175/1520-0469(1963)020h0130:DNFi2.0.CO;2

L. N. Howard and R. Krishnamurti, Large-scale flow in turbulent convection: a mathematical model, J. Fluid Mech. 170 (1986) 385, https://doi.org/10.1017/S0022112086000940

J. Binson, Chaotic advection in large-scale convection, Int. J. Bifurc. Chaos 8 (1998) 57, https://doi.org/10.1142/ S021812749800005X

J. L. Thiffeault and W. Horton, Energy conserving truncations for convection with shear flow, Phys. Fluids 8 (1996) 1715, https://doi.org/10.1063/1.868956

K. B. Hermiz, P. N. Guzdar and J. M. Finn, Improved loworder model for shear flow driven by Rayleigh-Benard convection, Phys. Rev. E. 51 (1995) 325, https://doi.org/10.1103/PhysRevE.51.325

A. Gluhovsky, C. Tong and E. Agee, Selection of modes in convective low-order models, J. Atmos. Sci. 59 (2002) 1383, https://doi.org/10.1175/1520-0469(2002)059h1383:SOMICLi2.0.CO;2

H. Aref, Stirring by chaotic advection, J. Fluid Mech. 143 (1984) 1, https://doi.org/10.1017/S0022112084001233

A. Einstein, Investigations on the Theory of the Brownian Movement (Courier Corporation, U.S.A. 1956) pp. 144, https://store.doverpublications.com/products/9780486603049

O. G. Bakunin, Chaotic Flows: correlation effects, transport, and structures, (Springer Science & Business Media, 2011) pp. 354 https://link.springer.com/book/10.1007/978-3-642-20350-3

A. Crisanti, M. Falcioni, A. Provenzale, P. Tanga and A. Vulpiani, Dynamics of passively advected impurities in simple twodimensional flow models, Phys. Fluids A. Fluid. Dyn. 4 (1992) 1805, https://doi.org/10.1063/1.858402

Downloads

Published

2024-11-01

How to Cite

[1]
R. Becerril Bárcenas and M. Maya, “Transport of particles in a model of 2D Rayleigh-Benard convection that conserves energy and vorticity”, Rev. Mex. Fís., vol. 70, no. 6 Nov-Dec, pp. 060601 1–, Nov. 2024.