A constant self-consistent scattering lifetime in superconducting strontium ruthenate
DOI:
https://doi.org/10.31349/RevMexFis.70.060501Keywords:
Constant superconducting lifetime; strontium ruthenate; unconventional superconductivity; ultrasound attenuation; electronic thermal conductivity; self-consistent methodAbstract
In this numerical work, we find a self-consistent constant scattering superconducting lifetime for two different values of the disorder parameters, the inverse atomic strength, and the stoichiometric impurity in the triplet paired unconventional super-conductor strontium ruthenate. This finding is relevant for experimentalists given that the expressions for the ultrasound attenuation and the electronic thermal conductivity depend on the superconducting scattering lifetime, and a constant lifetime fits well nonequilibrium experimental data. Henceforth, this work helps experimentalists in their interpretation of the acquired data. Additionally, we encountered tiny imaginary parts of the self-energy that resembles the Miyake-Narikiyo tiny gap out-side the unitary elastic scattering limit, and below the threshold zero gap value of 1.0 meV.
References
Maeno, Y., Hashimoto, H., Yoshida, K., Nishizaki, S., Fujita, T., Bednorz, JG. and Lichtenberg, F. 1994. Superconductivity in a layered perovskite without copper. Nature (London). 372:532-534. DOI: https://doi.org/10.1038/372532a0
Rice, T. and Sigrist, M. 1995. Sr2RuO4: an electronic analogue of 3He? Journal of Physics: Condensed Matter. Seven (47): L643-L648.
Luke, G., Fudamoto, Y., Kojima, KM., Larkin, MI., Merrin, J., Nachumi, B., Uemura, YJ., Maeno, Y., Mao, ZQ., Mori,
Y., Nakamura, H. and Sigrist, M. 1998. Time-reversal symmetry-breaking superconductivity in Sr2RuO4. Nature (London). 394(6693):558-561. DOI: https://doi.org/10.1038/29038
Ishida, K., Mukuda, H., Kitaoka, Y., Asayama, K., Mao, ZQ., Mori, Y. and Maeno, Y. 1998. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature (London). 396:658-660. https://doi.org/10.1038/25315
Duffy, JA., Hayden, SM., Maeno, Y., Mao, Z., Kulda, J. and McIntyre, GJ. 2000. Polarized-neutron scattering study of the Cooper-pair moment in Sr2RuO4. Physical Review Letters. 85(25):5412-5415. DOI: https://doi.org/10.1103/PhysRevLett.85.5412
Laube, F. Goll, G., Lohneysen, H., Fogelstrom, M, and Lichtenberg, F. 2000. Spin-Triplet Superconductivity in Sr2RuO4 Probed by Andreev Reflection, Phys. Rev. Lett. Vol. 84(7):1595 DOI: https://doi.org/d10.1103/PhysRevLett.84.1595
Mackenzie A., Haselwimmer R., Tyler A., Lonzarich G., Mori Y., Nishizaki S., and Maeno, Y. 1998. Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett., 80:161 DOI: https://doi.org/10.1103/PhysRevLett.80.161
Contreras, P., Osorio, D. and Ramazanov, SM. 2022. Nonmagnetic tight-binding effects on the γ-sheet of Sr2RuO2. Revista Mexicana de Física. 68(2):020502. DOI: https://doi.org/10.31349/RevMexFis.68.020502
Ambegaokar, V. and Griffin, A. 1965. Theory of the thermal conductivity of superconducting alloys with paramagnetic impurities. Physical Review. 137(4A): A1151. DOI: https://doi.org/10.1103/PhysRev.137.A1151
Pethick, C. and Pines, D. 1986. Transport processes in heavy-fermion superconductors. Phys Rev Lett. 57(1):118-121. DOI: https://doi.org/10.1103/PhysRevLett.57.118
Hirschfeld, P., Wölfle, P. and Einzel, D. 1988. Consequences of resonant impurity scattering in anisotropic superconductors: Thermal and spin relaxation properties. Phys. Rev. B. 37(1):83. DOI: https://doi.org/10.1103/PhysRevB.37.8
Arfi B. and Pethick, C. 1988. Thermal conductivity and ultrasonic attenuation in heavy fermion superconductors. Phys. Rev. B, 38:2312 DOI: https://doi.org/10.1103/PhysRevB.38.2312
Balatsky, A. Salkola, M. and Rosengren. A. 1995. Impurity-induced virtual bound states in d-wave superconductors. Phys Rev B 51(21):15547-15551. DOI: https://doi.org/10.1103/physrevb.51.15547
Mineev, V. and Samokhin, K. 1999. Introduction to Unconventional Superconductivity. Gordon and Breach Science Publishers, New York, USA. pp.200.
Contreras, P., Osorio, D. and Tsuchiya, S. 2022b. Quasi-point versus point nodes in Sr2RuO2, the case of a flat tight binding γ sheet. Revista Mexicana de Física. 68(6):060501. DOI: https://doi.org/10.31349/RevMexFis.68.060501
Schmitt-Rink, S., Miyake, K. and Varma, C. 1986. Transport and thermal properties of heavy-fermion superconductors: A unified picture. Phys. Rev. Lett. 57:2575. DOI: https://doi.org/10.1103/PhysRevLett.57.2575
Reif, F. 1965. Fundamentals of Statistical and Thermal Physics. McGraw Hill, New York, USA. pp.651. ISBN 0-07-051800-9
Kvashnikov, I. 2003. The Theory of Systems out of Equilibrium. Third Volume. Moscow State University Press, Moscow, Russia.
Daily, J. W. 2019. Statistical Thermodynamics, an Engineering Approach. Cambridge University Press. DOI:
https://doi.org/10.1017/9781108233194
R.-J.E. Jansen, R., Behnam F, and Kelly, M. 1991, The steady-state self-consistent solution to the nonlinear Wigner-function equation; a new approach, Physica B: Condensed Matter, Vol. 175(1–3):49 DOI: https://doi.org/10.1016/0921-4526(91)90688-B
Lupien, C., MacFarlane, WA., Proust, C., Taillefer, L., Mao, ZQ. and Maeno, Y. 2001. Ultrasound attenuation in Sr2RuO4: An angle-resolved study of the superconducting gap function. Physical Review Letters. 86(26):5986-5989. DOI: https://doi.org/10.1103/PhysRevLett.86.5986
Contreras, P., Walker, MB. and Samokhin, K. 2004. Determining the superconducting gap structure in Sr2RuO4 from sound attenuation studies below Tc. Physical Review B. 70(18):184528. DOI: https://doi.org/10.1103/PhysRevB.70.184528
Walker, MB., Smith, M. and Samokhin, K. 2001. Electron phonon interaction and ultrasonic attenuation in the ruthenate and cuprate superconductors. Physical Review B. 65(1):014517. DOI: https://doi.org/10.1103/PhysRevB.65.014517
Wu, WC. and Joynt, R. 2001. Transport and the order parameter of superconducting Sr2RuO4. Physical Review B. 64(10):100507. DOI: https://doi.org/10.1103/PhysRevB.64.100507
Nomura, T. 2005. Theory of transport properties in the p-wave superconducting state of Sr2RuO4 -a microscopic determination of the gap structure. Journal of the Physical Society of Japan. 74(6): 1818-1829 DOI: https://doi.org/10.1143/jpsj.74.1818
Kulik, IO. 1963. Heat anomaly of superconductors. JETP. 16(4):1952-1954. ISSN: 0044-4510
Vaskin, V. and Demikhovskii, V. 1968. Sound dispersion in superconducting semiconductors. Soviet Physics of the Solid State. 10(2):330-333. ISSN: 0038-5654
Dobbs, E. and Perz, J. 1964 Anisotropy of the Energy Gap in Niobium from Ultrasonic Measurements Rev. Mod. Phys. 36:257 DOI: https://doi.org/10.1103/RevModPhys.36.257
Pokrovskii, VL. and Toponogov, VA. 1961. Reconstruction of the energy gap in a superconductor by measurement of sound attenuation. JETP 13(4):785-786. ISSN: 0044-4510
Hess D., Tokuyasu T. and Sauls, J. 1989. Broken symmetry in an unconventional superconductor: a model for the double transition in UPt3. J. Phys. Condens. Matter, 1:8135 DOI: https://doi.org/10.1088/0953-8984/1/43/014
B. Shivaram Y. Jeong T. Rosenbaum and D. Hinks. 1986. Anisotropy of transverse sound in the heavy-fermion super-conductor UPt3. Phys. Rev. Lett., 56:1078. DOI: https://doi.org/10.1103/PhysRevLett.56.1078
Joynt, R. and Taillefer, L. 2002. The superconducting phases of UPt3. Rev. of Modern Physics, 74:235. DOI: https://doi.org/10.1103/RevModPhys.74.235
Walker, MB. and Contreras, P. 2002. Theory of elastic properties of Sr2RuO4 at the superconducting transition temperature. Physical Review B. 66(21):214508. DOI: https://doi.org/10.1103/PhysRevB.66.214508
Sigrist, M. 2002. Ehrenfest relations for ultrasound absorption in Sr2RuO4. Progress of Theoretical Physics. 107(5):917-925. DOI: https://doi.org/10.1143/PTP.107.917
Moreno, J. and Coleman, P. 1996. Ultrasound attenuation in gap-anisotropic systems. Phys. Rev. B 53, R2995 DOI: https://doi.org/10.1103/PhysRevB.53.R2995
Bruls, G., Wever, D., Wolf, B., Thalmeier P. and Luthi. B. 1990. Strain order parameter coupling and phase diagrams in superconducting UPt3. Phys. Rev. Lett., 65:2294 DOI: https://doi.org/10.1103/PhysRevLett.65.2294
Adenwalla, S., Lin, Q. Ran Z., Zhao, J., Ketterson, Sauls, J., Taillefer, L. Hinks, D., Levy, M. and Sarma, V. 1990. Phase diagram of UPt3 from ultrasonic velocity measurements. Phys. Rev. Lett., 65:2298. DOI: https://doi.org/10.1103/PhysRevLett.65.2298
Hicks, CW., Brodsky, DO., Yelland, EA., Gibbs, AS., Bruin, JAN., Barber, ME., Edkins, SD., Nishimura, K., Yonezawa, S., Maeno, Y. and Mackenzie, AP. 2014. Strong increase of Tc of Sr2RuO4 under both tensile and compressive strain. Science. 344(6181):283-285. DOI: https://doi.org/10.1126/science.1248292
Benhabib, S., Lupien, C., Paul, I., Berges, L., Dion, M., Nardone, M., Zitouni, A., Mao, ZQ., Maeno, Y., Georges, A., Taillefer, L. and Proust, C. 2020. Ultrasound evidence for a two-component superconducting order parameter in Sr2RuO4. Nature Physics. 6 pages. DOI: https://doi.org/10.1038/s41567-020-1033-3
Ghosh, S., Shekhter, A., Jerzembeck, F., Kikugawa, N., Sokolov, DA., Brando, M., Mackenzie, AP., Hicks, CW. and Ramshaw, BJ. 2020. Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4. Nature Physics. 9 pages. DOI: https://doi.org/10.1038/s41567-020-1032-4
Grinenko, V., Das, D., Gupta, R. et al. Unsplit superconducting and time reversal symmetry breaking transitions in Sr2RuO4 under hydrostatic pressure and disorder. Nat Commun 12, 3920 2021. DOI: https://doi.org/10.1038/s41467-021-24176-8
Contreras, P., Flórez, J. and Almeida, R. 2016. Symmetry field breaking effects in Sr2RuO4. Rev. Mex. Fis. 62(5):442-449 ISSN: 2683-2224
Tanatar, M., Nagai, S., Mao, Z., Maeno, Y. and Ishiguro, T. 2001. Thermal conductivity of superconducting Sr2RuO4 in oriented magnetic fields. Physical Review B. 63(6):064505. DOI: https://doi.org/10.1103/PhysRevB.63.064505
Contreras, P. 2011. Electronic heat transport for a multiband superconducting gap in Sr2RuO4. Rev. Mex. Fis. 57(5):395-399 ISSN: 2683-2224
Suzuki, M., Tanatar M., Kikugawa, N., Mao, Z., Maeno, Y. and Ishiguro. T. 2002. Universal heat transport in Sr2RuO4. Phys. Rev. Lett., 88:227004 DOI: https://doi.org/10.1103/PhysRevLett.88.227004
Larkin, A. 1965. Vector pairing in superconductors of small dimensions. JETP Letters. 2(5):105 ISSN: 0370-274X
Bergemann C., Julian, S., Mackenzie A., Nishizaki S. and Maeno, Y. 2000. Detailed topography of the Fermi surface of Sr2RuO4. Phys. Rev. Lett., 84:2662 DOI: https://doi.org/10.1103/PhysRevLett.84.2662
Miyake, K. and Narikiyo, O. 1999. Model for unconventional superconductivity of Sr2RuO4, effect of impurity scattering on time-reversal breaking triplet pairing with a tiny gap. Phys. Rev. Lett. 83:1423. DOI: https://doi.org/10.1103/PhysRevLett.83.1423
Agterberg, D. Rice, T. and Sigrist, M. 1997. Orbital dependent superconductivity in Sr2RuO4. Phys. Rev. Lett. 78:3374. DOI: https://doi.org/10.1103/PhysRevLett.78.3374
Zhitomirsky, ME. and Rice, TM. 2001. Interband proximity effect and nodes of superconducting gap in Sr2RuO4. Physical Review Letters. 87(5):057001. DOI: https://doi.org/10.1103/PhysRevLett.87.057001
Deguchi, K., Mao, Z., Yaguchi, H. and Maeno, Y. 2004. Gap structure of the spin-triplet superconductor Sr2RuO4 determined from the field-orientation dependence of the specific heat. Phys. Rev. Lett., 92:047002 DOI: https://doi.org/10.1103/PhysRevLett.92.047002
Wysokinski, K. Litak, G. Annett, J. and Gyorffy. B. 2003 Spin triplet superconductivity in Sr2RuO4. Phys. Stat. Sol (b), 236:325 DOI: https://doi.org/10.1002/pssb.200301672
Contreras, P. (2023) “The collision frequency in two unconventional superconductors”. Can. J. Pure Appl. Sci. 17(3):5731-5742. ISSN: 1920-3853
Schachinger, E. and Carbotte, JP. 2003. Residual absorption at zero temperature in d-wave superconductors. Phys. Rev. B. 67(13):134509. DOI: https://doi.org/10.1103/PhysRevB.67.134509
I. Schurrer, I., Schachinger, E. and Carbotte, J. 1998. Optical conductivity of superconductors with mixed symmetry order parameters Physica C, Vol. 303:287 DOI: https://doi.org/10.1016/S0921-4534(98)00256-1
Contreras, P. and Moreno, J. 2019. A nonlinear minimization calculation of the renormalized frequency in dirty d-wave superconductors. Canadian Journal of Pure and Applied Sciences. 13(2):4765-4772. ISSN: 1920-3853
Contreras, P. and Osorio, D. 2021. Scattering due to non-magnetic disorder in 2D anisotropic d-wave high Tc superconductors. Engineering Physics. 5(1):1-7. DOI: https://doi.org/10.11648/j.ep.20210501.11
Contreras, P. Osorio, D. and Devi A. 2023 Self-Consistent Study of the Superconducting Gap in the Strontium-doped Lanthanum Cuprate, Int. J. Appl. Math. Theor. Phys. Vol. 9(1), pp. 1-13. DOI: https://doi.org/10.11648/j.ijamtp.20230901.11
Lupien, Christian. 2002. Ultrasound attenuation in the unconventional superconductor Sr2RuO4. PhD thesis, University of Toronto. Toronto. Canadá.
Contreras, P., Osorio, D. and Devi, A. 2022. The effect of nonmagnetic disorder in the superconducting energy gap of strontium ruthenate. Physica B: Condensed Matter. 646:414330. DOI: https://doi.org/10.1016/j.physb.2022.414330
Leggett, A. and Liu, Y. 2021. Symmetry Properties of Superconducting Order Parameter in Sr2RuO4. J Supercond Nov Magn 34:1647. https://doi.org/10.1007/s10948-020-05717-6
Käser, S. 2021. Response functions of strongly correlated electron systems: From perturbative to many-body techniques. Ph. D. Thesis, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany.
Jerzembeck, F. Steppke, A., Pustogow, A. et al. 2024. Upper critical field of Sr2RuO4 under in-plane uniaxial pressure. Phys. Rev. B 107, 064509. DOI: https://doi.org/10.1103/PhysRevB.107.064509
Kazemi-Moridani, A. Beck, S., Hampel A. et al. Strontium ferrite under pressure: Potential analogue to strontium ruthenate. Phys. Rev. B Accepted. 27 March 2024. DOI: https://doi.org/10.48550/arXiv.2312.05314
Baker, G., Branch, T., Bobowski, J., Day, J., et al. 2024. Nonlocal Electrodynamics in Ultrapure PdCoO2. Phys. Rev. X 14, 011018. DOI: https://doi.org/10.1103/PhysRevX.14.011018
Shaginyan J. and Amusia. M. 2020. Strongly Correlated Fermi Systems: A New State of Matter, Springer Tracts in Modern Physics. DOI: https://doi.org/10.1007/978-3-030-50359-8
Krasavin, A., Vagov, A., Vasenko, A. et al. 2024. Suppression of Superconducting Fluctuations in Multiband Superconductors as a Mechanism for Increasing the Critical Temperature (Brief Review). JETP Lett. 119, 233–250 DOI. https://doi.org/10.1134/S0021364023603755
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Pedro L. Contreras
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.