Analysis of errors in corneal topography evaluation caused by distortion aberration in the camera lens of a cone corneal topographer
DOI:
https://doi.org/10.31349/RevMexFis.71.051305Keywords:
Corneal Topography, Null Test, Geometrical OpticsAbstract
We study the effects on corneal topography when the topographer camera is affected by distortion aberration, causing a nonuniform magnification in the image recorded by the camera sensor. As a result, images present a size change which could mislead the interpretation of the vertex position of the anterior corneal surface. Images numerically generated and distorted using the Seidel's aberrations are used to carry out the analysis. According to the results presented in this paper, while the reconstruction algorithm accurately recovers the central region of the surface, there are pronounced deviations between the retrieved surface and the actual surface towards the periphery. These deviations could lead to the underestimation or overestimation of the parameters associated with the base surface for a contact lens, affecting the correction of refractive errors such as myopia, hyperopia or astigmatism. Moreover, if the corneal topography provided by a topographer affected by distortion aberration is used for corneal reshaping via laser ablation, the refractive errors might be overcorrected or undercorrected. Thus, this paper highlights the importance of performing a proper calibration procedure for the distortion aberration of the corneal topographer camera, in order to reliably recover an accurate corneal topography.
References
D. A. Atchison and G. Smith, Refracting Components: Cornea and Lens, in Optics of the human eye (Butterworth-Heinemann, 2000), pp. 15-41
M. Kaschke, K. H. Donnerhacke, and M. S. Rill, Optical Devices in Ophthalmology and Optometry. Technology, Design Principles, and Clinical Applications, (Wiley-VCH, 2014)
S. L. Hill, Non-Surgical Treatment of Keratoconus Using Contact Lenses, in Keratoconus & keratoectasia: prevention, diagnosis, and treatment, M. Wang and T. S. Swartz, Eds., (Slack Incorporated 2010), pp 119-132
D. Gatinel, T. Hoang-Xuan and D. T. Azar, Three-dimensional representation and qualitative comparisons of the amount of tissue ablation to treat mixed and compound astigmatism, J Cataract Refract Surg 28 (2002) 2026
T. Sakimoto, M. I. Rosenblatt and D. T. Azar, Laser eye surgery for refractive errors, Lancent 367 (2006) 1432
S. C. Ipek and C. A. Utine, Topography-Guided Excimer Laser Ablation in Refractive Surgery, Frontiers in Ophthalmology, 4 (2024) 1
Y. Mejía-Barbosa and D. Malacara-Hernández, A Review of Methods for Measuring Corneal Topography, Optometry and Vision Science 78 (2001) 240
J. M. Jalife-Chavira, G. Trujillo-Schiaffino, P. G. Mendoza Villegas, D. P. Salas-Peimbert, M. Anguiano-Morales and L. F. Corral-Martínez, Optical methods for measuring corneal topography: A review, Opt. Pura Apl. 52 (2019) 1
N. T. Al-Sharify, S. M. Ahmed, H. Y. Nser, O. H. See, Z.T. Al-Sharify, N. H. Ghaeb, L. Y. Weng, Corneal topography, an overview of its devices and systems-A review, AIP Conf. Proc. 090041 (2023) 2787
A. K. Ghatak and K. Tahyagarajan, Geometrical theory of thirdorder aberrations, in Contemporary Optics (Plenum, 1978), pp. 31-70
S. Lee, B. Kim, J. Lee, and J. Sasian, Accurate determination of distortion for smartphone cameras, Appl. Opt. 53 (2014) H1
Z. Tang, R. Grompone von Gioi, P. Monasse and J.-M. Morel, A Precision Analysis of Camera Distortion Models, IEEE Trans. Image Process 26 (2017) 2694. 13. M. Campos-García, D. Aguirre-Aguirre, V. I. Moreno-Oliva, O. Huerta-Carranza, and V. Armengol-Cruz, Measurement and correction of misalignments in corneal topography using the null-screen method, OSA Continuum 4 (2021) 158
O. Huerta-Carranza, M. Campos-García, V. I. Moreno-Oliva, D. Aguirre-Aguirre, and J. S. Pérez-Lomelí, Smartphone-based corneal topography with null-screens, Appl. Opt. 61 (2022) 1381
M. Campos-García, O. Huerta-Carranza, V. I. Moreno-Oliva, D. Aguirre-Aguirre, and L. A. Pantoja-Arredondo, Corneal topography using a smartphone-based corneal topographer considering a biconical model for the corneal surface, Opt. Continuum 3 (2024) 751
S. A. Klein, Axial Curvature and the Skew Ray Error in Corneal Topography, Optometry and Vision Science 74 (1997) 931
Daniel Gómez-Tejada, Daniel Malacara Hernández, A proposal to eliminate the skew ray error in corneal topography using Placido disks images Proc. SPIE 11102 (2019) 1110206
D. Gómez-Tejada, Z. Malacara-Hernández, D. Malacara-Doblado, and D. Malacara-Hernández, Zonal integration of circular Hartmann and Placido patterns with non-rotationally symmetric aberrations, J. Opt. Soc. Am. A 37 (2020) 1381
O. Huerta-Carranza, M. Campos-García, L. A. Pantoja Arredondo, F. Granados-Agustín, Effect of the skew ray error on corneal topography using a cone topographer, Proc. SPIE 13021 (2024) 130210ª
R. Kingslake and R. B. Johnson, Aberration Theory, in Lens Design Fundamentals (SPIE, 2010), pp. 101-135
M. Wang, Corneal Topography: A Guide for Clinical Application in Wavefront Era, 2nd ed. (Slack Incorporated 2011)
J. J. Snellenburg, B. Braaf, E. A. Hermans, R. G.L. van der Heijde, and V. A. D. P. Sicam, Forward ray tracing for image projection prediction and surface reconstruction in the evaluation of corneal topography systems, Opt. Express 18 (2010) 19324
O. Huerta-Carranza, M. Avendaño-Alejo, and R. Díaz-Uribe, Null screens to evaluate the shape of freeform surfaces: progressive addition lenses, Opt. Express 29 (2021) 27921
A. Fitzgibbon, M. Pilu and R. B. Fisher, Direct least square fitting of ellipses, IEEE Trans. Pattern Anal. Mach. Intell. 21 (1999) 476
P. Sturm, Pinhole Camera Model, In Computer Vision, K. Ikeuchi, Ed., (Springer, Boston) (2014) pp 610-613
J. Weng, P. Cohen and M. Herniou, Calibration of stereo cameras using a non-linear distortion model, in Proceedings of the 10th International Conference on Pattern Recognition (Atlantic City, NJ), 1 (1990) 246
Z. Zhang, A flexible new technique for camera calibration, IEEE Transactions on pattern analysis and machine intelligence, 22 (2000) 1330
W. H. Press, Integration of Functions, in Numerical Recipes: The Art of Scientific Computing (Cambridge, 2007), pp. 155- 200
J. Ye, L. Chen, X. Li, Q. Yuan and Z. Gao, Review of optical freeform surface representation technique and its application, Opt. Eng. 56 (2017) 110901
R. S. Esfandiari, Curve Fitting and Interpolation, in Numerical methods for engineers and scientists using MATLAB (CRC Press, 2013), pp 161-248
A. Estrada-Molina, M. Campos-García, and R. Díaz-Uribe, Sagittal and meridional radii of curvature for a surface with symmetry of revolution by using a null-screen testing method, Appl. Opt. 52 (2013) 625
R. E. Fischer, B. Tadic-Galeb and P. R. Yoder, Spherical and Aspheric Surfaces, in Optical System Design (SPIE, 2010), pp. 115-127
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 O. Huerta-Carranza, F. Granados-Agustín, Manuel Campos-García, J. Ocampo-López-Escalera, M. Campos-García, M. Avendaño-Alejo

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.