Multiplicity dependence of the entropy and heat capacity for pp collisions at LHC energies

Authors

DOI:

https://doi.org/10.31349/RevMexFis.72.010802

Keywords:

ultrarelativistic collisions, entropy, heat capacity, nonextensivity, pT spectrum

Abstract

We investigate the multiplicity dependence of the transverse momentum spectrum of the charged particle production in pp collisions at LHC energies. To this end, we consider the experimental data classified with different multiplicity estimators, defined by the ALICE Collaboration, that are analyzed under the picture of the nonextensive particle production. We compute the variance, kurtosis, Shannon entropy, and heat capacity of the $p_T$ spectrum to study the hardening process as a function of the multiplicity and temperature under the different event classifiers. We found that both the Shannon entropy and the heat capacity show different responses for the triggers at the forward-backward and midrapidity regions. We emphasize that the selection of event biases may induce different responses in estimating theoretical and phenomenological observables that could lead to misleading conclusions.

References

BRAHMS Collaboration, Quark-gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1, https://doi.org/10.1016/j.nuclphysa.2005.02.130

PHOBOS Collaboration, The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28, https://doi.org/10.1016/j.nuclphysa.2005.03.084

STAR Collaboration, Experimental and theoretical challenges in the search for the quark-gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102, https://doi.org/10.1016/j.nuclphysa.2005.03.085

PHENIX Collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration, Nucl. Phys. A 757 (2005) 184, https://doi.org/10.1016/j.nuclphysa.2005.03.086

ALICE Collaboration, The ALICE experiment: a journey through QCD, Eur. Phys. J. C 84 (2024) 813, https://doi.org/10.1140/epjc/s10052-024-12935-y

R. Vogt, Ultrarelativistic Heavy-Ion Collisions (Elsevier Science B.V., Amsterdam, 2007), pp. 221-278, https://doi.org/10.1016/B978-044452196-5/50005-0

P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2019), https://doi.org/10.1017/9781108651998

ALICE Collaboration, Energy Dependence of the Transverse Momentum Distributions of Charged Particles in pp Collisions Measured by ALICE, Eur. Phys. J. C 73 (2013) 2662, https://doi.org/10.1140/epjc/s10052-013-2662-9

ALICE Collaboration, Pseudorapidity and transversemomentum distributions of charged particles in proton-proton collisions at √ s = 13 TeV, Phys. Lett. B 753 (2016) 319, https://doi.org/10.1016/j.physletb.2015.12.030

ALICE Collaboration, Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC, JHEP 11 (2018) 013, https://doi.org/10.1007/JHEP11(2018)013 11. W. Busza, K. Rajagopal, and W. van der Schee, Heavy Ion Collisions: The Big Picture, and the Big Questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339, https://doi.org/10.1146/annurev-nucl-101917-020852

ALICE Collaboration, Multiplicity dependence of chargedparticle production in pp, p-Pb, Xe-Xe and Pb-Pb collisions at the LHC, Phys. Lett. B 845 (2023) 138110, https://doi.org/10.1016/j.physletb.2023.138110

ALICE Collaboration, Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p-Pb Collisions at √ sNN = 5.02 TeV, Phys. Lett. B 728 (2014) 25, https://doi.org/10.1016/j.physletb.2013.11.020

ALICE Collaboration, Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-Pb collisions at √ sNN = 5.02 TeV, Phys. Lett. B 760 (2016) 720, https://doi.org/10.1016/j.physletb.2016.07.050

CMS Collaboration, Evidence for collectivity in pp collisions at the LHC, Phys. Lett. B 765 (2017) 193, https://doi.org/10.1016/j.physletb.2016.12.009

ALICE Collaboration, Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions, Nature Phys. 13 (2017) 535, https://doi.org/10.1038/nphys4111

J. L. Nagle and W. A. Zajc, Small System Collectivity in Relativistic Hadronic and Nuclear Collisions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 211, https://doi.org/10.1146/annurev-nucl-101916-123209

F. Arleo and G. Falmagne, Probing the path-length dependence of parton energy loss via scaling properties in heavy ion collisions, Phys. Rev. D 109 (2024) L051503, https://doi.org/10.1103/PhysRevD.109.L051503

J. C. Collins and D. E. Soper, The Theorems of Perturbative QCD, Ann. Rev. Nucl. Part. Sci. 37 (1987) 383, https://doi.org/10.1146/annurev.ns.37.120187.002123

G. Veneziano, Construction of a crossing - symmetric, Regge behaved amplitude for linearly rising trajectories, Nuovo Cim. A 57 (1968) 190, https://doi.org/10.1007/BF02824451

J. D. Bjorken and J. B. Kogut, Correspondence Arguments for High-Energy Collisions, Phys. Rev. D 8 (1973) 1341, https://doi.org/10.1103/PhysRevD.8.1341

M. Diehl, D. Ostermeier, and A. Schafer, Elements of a theory for multiparton interactions in QCD, JHEP 2012 (2012) 089, https://doi.org/10.1007/JHEP03(2012)089

R. Hagedorn, Multiplicities, pT Distributions and the Expected Hadron → Quark - Gluon Phase Transition, Riv. Nuovo Cim. 6 (1983) 1, https://doi.org/10.1007/BF02740917

R. Hagedorn, Statistical thermodynamics of strong interactions at high-energies, Nuovo Cim. Suppl. 3 (1965) 147

R. Hagedorn and J. Ranft, Statistical thermodynamics of strong interactions at high-energies. 2. Momentum spectra of particles produced in pp-collisions, Nuovo Cim. Suppl. 6 (1968) 169

S. C. Frautschi, Statistical Bootstrap Model of Hadrons, Phys. Rev. D 3 (1971) 2821, https://doi.org/10.1103/PhysRevD.3.2821

P. Braun-Munzinger et al., Thermal equilibration and expansion in nucleus-nucleus collisions at the AGS, Phys. Lett. B 344 (1995) 43, https://doi.org/10.1016/0370-2693(94)01534-J

J. C. Texca García et al., Percolation leads to finite-size effects on the transition temperature and center-of-mass energy required for quark-gluon plasma formation, Phys. Rev. D 106 (2022) L031503, https://doi.org/10.1103/PhysRevD.106.L031503

C. Michael and L. Vanryckeghem, Consequences of Momentum Conservation for Particle Production at Large Transverse Momentum, J. Phys. G 3 (1977) L151, https://doi.org/10.1088/0305-4616/3/8/002

T. Bhattacharyya et al., Non-extensivity of the QCD pT - spectra, Eur. Phys. J. A 54 (2018) 222, https://doi.org/10.1140/epja/i2018-12647-6

G. Wilk and Z. Włodarczyk, Interpretation of the Nonextensivity Parameter q in Some Applications of Tsallis Statistics and Levy Distributions, Phys. Rev. Lett. 84 (2000) 2770, https://doi.org/10.1103/PhysRevLett.84.2770

G. Biró et al., Application of the Non-extensive Statistical Approach to High Energy Particle Collisions, AIP Conf. Proc. 1853 (2017) 080001, https://doi.org/10.1063/1.4985366

T. Bhattacharyya et al., On the precise determination of the Tsallis parameters in proton-proton collisions at LHC energies, J. Phys. G 45 (2018) 055001, https://doi.org/10.1088/1361-6471/aaaea0

K. Saraswat, P. Shukla, and V. Singh, Transverse momentum spectra of hadrons in high energy pp and heavy ion collisions, J. Phys. Commum. 2 (2018) 035003, https://doi.org/10.1088/2399-6528/aab00f

P.-P. Yang, F.-H. Liu, and R. Sahoo, A new description of transverse momentum spectra of identified particles produced in proton-proton collisions at high energies, Adv. High Energy Phys. 2020 (2020) 6742578, https://doi.org/10.1155/2020/6742578

D. Rosales Herrera et al., Nonextensivity and temperature fluctuations of the Higgs boson production, Phys. Rev. C 110 (2024) 015205, https://doi.org/10.1103/PhysRevC.110.015205

A. N. Mishra, G. G. Barnaföldi, and G. Pai’c, Quantifying the underlying event: investigating angular dependence of multiplicity classes and transverse momentum spectra in high energy pp collisions at LHC energies, J. Phys. G 50 (2023) 095004, https://doi.org/10.1088/1361-6471/ace924

C.-Y. Wong, et al., From QCD-based hard-scattering to non extensive statistical mechanical descriptions of transverse momentum spectra in high-energy pp and pp collisions, Phys. Rev. D 91 (2015) 114027, https://doi.org/10.1103/PhysRevD.91.114027

M. Rybczynski and Z. Wlodarczyk, Similarities in Multiparticle Production Processes in pp Collisions as Imprints of Nonextensive Statistics, Symmetry 12 (2020) 1339, https://doi.org/10.3390/sym12081339

B. Andersson, The Lund model (Cambridge University Press, 1998), https://doi.org/10.1017/CBO9780511524363

J. Schwinger, Gauge Invariance and Mass. II, Phys. Rev. 128 (1962) 2425, https://doi.org/10.1103/PhysRev.128.2425

A. Bialas, Fluctuations of string tension and transverse mass distribution, Phys. Lett. B 466 (1999) 301, https://doi.org/10.1016/S0370-2693(99)01159-4

C. Pajares and J. E. Ramírez, On the relation between the soft and hard parts of the transverse momentum distribution, Eur. Phys. J. A 59 (2023) 250, https://doi.org/10.1140/epja/s10050-023-01170-w

J. R. Alvarado García et al., Soft and hard scales of the transverse momentum distribution in the color string percolation model, J. Phys. G Nucl. Partic. 50 (2023) 125105, https://doi.org/10.1088/1361-6471/acffe1

D. Rosales Herrera et al., Entropy and heat capacity of the transverse momentum distribution for pp collisions at RHIC and LHC energies, Phys. Rev. C 109 (2024) 034915, https://doi.org/10.1103/PhysRevC.109.034915

ALICE Collaboration, Multiplicity dependence of light-flavor hadron production in pp collisions at √ s = 7 TeV, Phys. Rev. C 99 (2019) 024906, https://doi.org/10.1103/PhysRevC.99.024906

ALICE Collaboration, Charged-particle production as a function of multiplicity and transverse spherocity in pp collisions at √ s = 5.02 and 13 TeV, Eur. Phys. J. C 79 (2019) 857, https://doi.org/10.1140/epjc/s10052-019-7350-y

CMS Collaboration, Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC, JHEP 2010 (2010) 091, https://doi.org/10.1007/JHEP09(2010)091

M. L. Miller et al., Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205, https://doi.org/10.1146/annurev.nucl.57.090506.123020

ALICE Collaboration, Multiplicity dependence of twoparticle azimuthal correlations in pp collisions at the LHC, JHEP 2013 (2013) 049, https://doi.org/10.1007/JHEP09(2013)049

A. Ortiz, G. Bencedi, and H. Bello, Revealing the source of the radial flow patterns in proton-proton collisions using hard probes, J. Phys. G 44 (2017) 065001, https://doi.org/10.1088/1361-6471/aa6594

S. Abe, Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: A basis for q-exponential distributions, Phys. Rev. E 66 (2002) 046134, https://doi.org/10.1103/PhysRevE.66.046134

A. A. Budini, Generalized fluctuation relation for power-law distributions, Phys. Rev. E 86 (2012) 011109, https://doi.org/10.1103/PhysRevE.86.011109

J. Rafelski, ed., Thermodynamics of Distinguishable Particles: A Key to High-Energy Strong Interactions?, pp. 183- 222 (Springer International Publishing, Cham, 2016), https://doi.org/10.1007/978-3-319-17545-4_19

A. Bialas, Tsallis p⊥ distribution from statistical clusters, Phys. Lett. B 747 (2015) 190, https://doi.org/https://doi.org/10.1016/j.physletb.2015.05.076

S. Deb et al., Study of QCD dynamics using small systems, Eur. Phys. J. A 57 (2021) 195, https://doi.org/10.1140/epja/s10050-021-00496-7

G. Biró, G. G. Barnaföldi, and T. S. Biró, Tsallis-thermometer: a QGP indicator for large and small collisional systems, J. Phys. G 47 (2020) 105002, https://doi.org/10.1088/1361-6471/ab8dcb

P. Braun-Munzinger and J. Stachel, (Non)thermal aspects of charmonium production and a new look at J / psi suppression, Phys. Lett. B 490 (2000) 196, https://doi.org/10.1016/S0370-2693(00)00991-6

M. Badshah et al., Systematic analysis of the pp collisions at LHC energies with Tsallis function, EPL 141 (2023) 64002, https://doi.org/10.1209/0295-5075/acbf6d

S. Schlichting and D. Teaney, The First fm/c of Heavy- Ion Collisions, Ann. Rev. Nucl. Part. Sci. 69 (2019) 447, https://doi.org/10.1146/annurev-nucl-101918-023825

F. G. Gardim et al., Thermodynamics of hot stronginteraction matter from ultrarelativistic nuclear collisions, Nature Phys. 16 (2020) 615, https://doi.org/10.1038/s41567-020-0846-4

C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J 27 (1948) 379, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

R. K. Niven and B. Andresen, Jaynes’ maximum entropy principle, Riemannian metrics and generalised least action bound, In Complex Physical, Biophysical and Econophysical Systems, pp. 283-317 (World Scientific, 2010)

T. Langen et al., Experimental observation of a generalized Gibbs ensemble, Science 348 (2015) 207, https://doi.org/10.1126/science.1257026

G. Nijs and W. van der Schee, Ultracentral heavy ion collisions, transverse momentum and the equation of state, Phys. Lett. B 853 (2024) 138636, https://doi.org/10.1016/j.physletb.2024.138636

ALICE Collaboration, Search for jet quenching effects in highmultiplicity pp collisions at √ s = 13 TeV via di-jet acoplanarity, JHEP 2024 (2024) 229, https://doi.org/10.1007/JHEP05(2024)229

Downloads

Published

2026-01-01

How to Cite

[1]
C. . Munguía, D. Rosales Herrera, J. R. Alvarado García, A. Fernández Téllez, and J. Ramírez, “Multiplicity dependence of the entropy and heat capacity for pp collisions at LHC energies”, Rev. Mex. Fís., vol. 72, no. 1 Jan-Feb, pp. 010802 1–, Jan. 2026.